## 4.0 Forecast

## 4.1 Introduction

Forecasts of commercial and general aviation activity, presented in this chapter, estimate the level of activity expected at Wyoming airports during the next 20 years. These activity projections assist in verifying the roles of individual airports in the Wyoming Aviation System and help to determine whether existing facilities are adequate to accommodate future demand. The forecast period is 2007-2027.

This chapter examines and projects the following components of Wyoming airport activity:

- Commercial airline enplanements
- Based general aviation aircraft
- Total aircraft operations

To set a context for the forecasts, also presented in this chapter is a brief discussion of methodology as well as a review of national and statewide aviation trends where they have bearing on the outlook for the forecasts.

## 4.2 Methodology

In 2005, Wilbur Smith Associates (WSA) prepared a statewide forecast of aviation activity for Wyoming. The forecasts were built on an extensive analysis of aviation trends in Wyoming up through 2004 as well as review of available individual airport planning documents, FAA forecasts for each airport and the U.S. domestic market for general aviation activity and commercial service. The forecasts examined socio-economic trends in the state including population, employment, personal income, cost of living and tourism. In addition, WSA back-tested previous forecasts against actual recorded activity to discern which forecasts and forecast methodologies resulted in the most accurate forecasts. Individual and statewide forecasts were prepared applying three basic methodologies: (1) a bottom-up approach; (2) a top down approach using state and national growth rates; and (3) individual airport circumstances to adjust forecast rates of growth. Taking into account the three methodologies, WSA prepared a high and low forecast for each airport.

The forecasts presented in this chapter essentially update the forecasts prepared in 2005 by applying the same Compound Annual Growth Rates (CAGR) for each airport and activity that was developed by WSA to 2007 activity levels. This approach takes into account changes in aviation activity over the last three years and demonstrates clearly the consequences of using a different base year for forecasting. **Table 4-1** compares the statewide totals for passenger enplanements, based aircraft and operations for 2004 and 2007. Between 2004 and 2007, enplanements grew by 27%. Based aircraft declined by 10% and total operations declined by 9%. Applying the same annual growth rates to 2007 resulted in a slightly dampened based aircraft and operations forecast and a more aggressive enplanement forecast. That said, the 2005 forecast's annual high growth rate for passenger enplanements over the forecast period was 2% per year. The most recent FAA Aerospace forecasts project domestic passenger enplanements to grow an average of 2.8% per year through 2025.<sup>1</sup>



<sup>&</sup>lt;sup>1</sup> FAA Aerospace Forecast Fiscal Years 2008-2025

| Airport Metric         | 2004 2007 |         | Difference | Change % |  |  |
|------------------------|-----------|---------|------------|----------|--|--|
| Passenger Enplanements | 390,655   | 495,739 | 105,084    | 27%      |  |  |
| Based Aircraft         | 1,076     | 964     | (112)      | (10%)    |  |  |
| Total Operations       | 465,350   | 425,581 | (39,769)   | (9%)     |  |  |

Table 4-1Wyoming Airport Activity - 2004 and 2007

Source: 2005 Statewide Aviation Forecast Update, WYDOT Aeronautics, SEH, KRAMER aerotek

## 4.3 National Trends

In 2007, demand for commercial air service and general aviation remained strong and returned aviation activity to levels seen before the tragic events of September 11, 2001 (9-11). However, by 2008, this recovery appeared to be leveling off or coming to an end. The full impact of dramatic increases in fuel costs not only offset airline efforts to reduce operating costs, but these high energy costs plus tight credit markets dampened the outlook for aviation activity in the U.S.

The State of Wyoming is an integral part of the national transportation system. As such, what happens nationally will impact the statewide aviation system. Current economic uncertainties are clouding the near term view. Among the most important national factors that will influence Wyoming today, and in the near future include:

- The worldwide credit crisis has and will spillover into every sector of economic activity, including aviation.
- For the airline industry, intense competition and high fuel prices previously sent numerous carriers into bankruptcy. The airlines have aggressively cut costs and restructured debt. Available options to further reduce operating costs are probably limited.
- Because the legacy carriers have substantially lowered their costs, low cost and legacy carriers are operating with similar cost structures today and can compete more effectively with each other.
- While structurally the airlines are already lean, with softening demand for domestic air travel, airlines are moving quickly to cut capacity as the next means of reducing costs.
- Historically, when the going is tough, airlines cut service to smaller airports first.
- In this environment, retention of air service in Wyoming will be as critical as development of new air service.
- Tight capital markets and slow approval of new technology have slowed down the development, production (and consequently use) of very light jets.
- An aging general aviation fleet and the cost of fuel will continue to dampen the extent of recreational flying.



## 4.4 Wyoming Trends

## 4.4.1 Passengers Enplanements

Wyoming has ten Commercial Service Airports and in 2007 these airports enplaned approximately 496,000 passengers as shown in **Table 4-2**. Jackson handles more than half the state's passengers and serves as an important tourist destination. Casper has the second largest number of enplanements followed by Cody, Gillette, Rock Springs and Sheridan.

| Associated City           | 2007 Enplanements | Percent Share of State Enplanements |
|---------------------------|-------------------|-------------------------------------|
| Jackson                   | 277,361           | 57                                  |
| Casper                    | 76,908            | 16                                  |
| Cody                      | 26,799            | 5                                   |
| Gillette                  | 25,647            | 5                                   |
| Rock Springs              | 21,791            | 4                                   |
| Sheridan                  | 20,978            | 4                                   |
| Cheyenne                  | 16,766            | 3                                   |
| Riverton                  | 15,831            | 3                                   |
| Laramie                   | 9,939             | 2                                   |
| Worland                   | 3,719             | 1                                   |
| <b>Total Enplanements</b> | 495,739           | 100                                 |

| Table 4           | -2            |
|-------------------|---------------|
| Passenger Enplane | ements - 2007 |

Source: WYDOT Aeronautics

With the exception of seasonal point-to-point service to Jackson, Wyoming airports function as spoke cities in network carrier hubs. In 2007, Wyoming had air service to Denver, Salt Lake City and Minneapolis/St. Paul and seasonal service between Jackson and Chicago, Dallas-Ft. Worth and Atlanta. There are also a significant number of potential Wyoming passengers who drive to Denver, Salt Lake City, and Billings to fly from these larger airports.

The State of Wyoming and the ten Commercial Service Airports actively support retention and development of air service. Grants from the state's Air Service Enhancement program since 2004, positive results from the Fly Wyoming campaign to raise awareness of Wyoming airports and/or an increase in the state's economic position has contributed to an increased use of the Commercial Service Airports in Wyoming. It is unknown if the increase in use is attributable to one of these items or some combination. Additional stimulators not mentioned here may also have contributed to the increase. Additional discussion of the state's programs, the state and national economy, and their impacts on air service is discussed in greater detail in **Chapter 8. Chart 4-1** compares Wyoming enplanement trends to national trends.



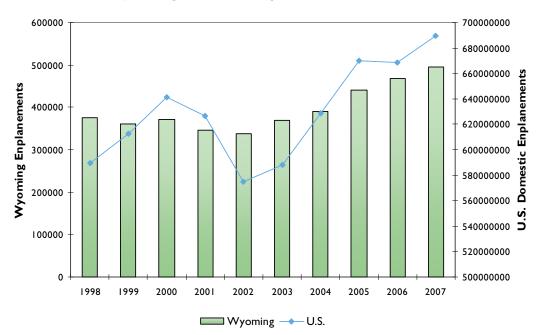



Chart 4-1 Wyoming and U.S. Enplanements 1998-2007

Several points are noteworthy. First, Wyoming enplanements appear to represent, at least through 2003, a base and steady level of demand (and service) within the state. Wyoming did not experience as significant a drop in enplanements following the terrorist attacks of September 11, 2001. Starting in 2004, the U.S. (including Wyoming) began to recover. However, the steady increase in Wyoming enplanements is certainly a departure from national trends. **Table 4-3** shows the changes in capacity at airports of different hub sizes.<sup>1</sup> Capacity is measured as the number of seats available at a particular airport. At the national level, capacity is down for every size airport, but the number of seats available at non-hub airports. However, in Wyoming the number of seats available grew as **Chart 4-2** shows. In 2004, the first year of the Air Service Enhancement Program, capacity grew to 626,423 outbound seats and in 2007, outbound capacity increased 25% to 783,435 seats. In addition to the Air Service Enhancement Program, oil, gas and coal development has contributed to increases in air service activity throughout Wyoming.



<sup>&</sup>lt;sup>1</sup> FAA definitions of hub sizes are shown in **Table 4-4**.

| Airport Hub Size | Percent Change Domestic Seats 2000-2007 |
|------------------|-----------------------------------------|
| Large            | (7.8)                                   |
| Medium           | (7.5)                                   |
| Small            | (10.5)                                  |
| Non-Hub          | (21.2)                                  |

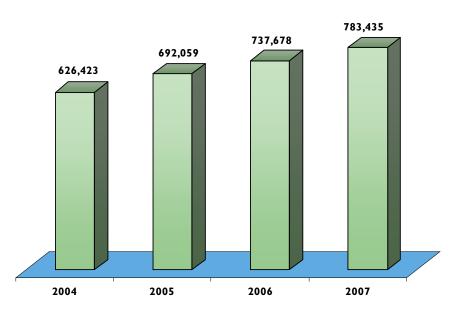
# Table 4-3U.S. Capacity Change in Number of Available Seats

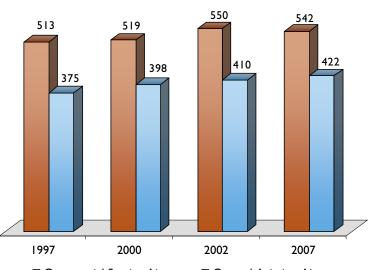
Source: Official Airline Guide and US DOT

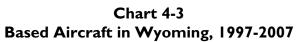
#### Table 4-4 FAA Hub Definitions

| Hub Type            | Annual Enplanements Levels             | 2007 Enplanement<br>Benchmark |
|---------------------|----------------------------------------|-------------------------------|
| Large Hub           | 1% or more of annual enplanements      | 7,647,230                     |
| Medium Hub          | At least .25%, but less than 1%        | 1,911,807                     |
| Small Hub           | At least .05%, but less than .25%      | 382,361                       |
| Non-hub             | More than 10,000 but less than .05%    | 10,001                        |
| Non-primary non-hub | At least 2,500 but no more than 10,000 | 2,500                         |

Source: Federal Aviation Administration





Chart 4-2 Wyoming Capacity Change in Seats


> ■ Seat Capacity Source: US DOT T100



### 4.4.2 Based Aircraft

**Chart 4-3** shows the aggregate changes in based aircraft in the state over the last ten years. The number of based aircraft was growing steadily until the terrorist attacks of September 11, 2001. Since 2002, total based aircraft have remained essentially unchanged. However, there are some significant changes in the number of based aircraft at individual airports. **Table 4-5** shows the airports with largest gains in based aircraft and those with the greatest losses. Cheyenne, Lander and Afton had the largest increases in based aircraft; Greybull, Cody and Wheatland, experienced the largest decreases.





Commercial Service Airports General Aviation Airports

Table 4-5Largest Changes in Based Aircraft

| Associated City | 1997 | 2007 | 1997-2007 Change |
|-----------------|------|------|------------------|
| Cheyenne        | 37   | 77   | 40               |
| Sheridan        | 75   | 88   | 13               |
| Cody            | 70   | 57   | (13)             |
| Jackson         | 54   | 47   | (7)              |
| Afton           | 19   | 40   | 21               |
| Saratoga        | 15   | 27   | 12               |
| Greybull        | 56   | 27   | (29)             |
| Pinedale        | 26   | 17   | (9)              |
| Lander          | 31   | 55   | 24               |
| Wheatland       | 25   | 14   | (11)             |

Source: FAA Terminal Area Forecasts (TAF), FAA Form 5010, 2007 SEH Airport Survey



#### 4.4.3 Aircraft Operations

Annual operations represent the number of aircraft takeoffs and landings occurring at an airport during a calendar year. **Chart 4-4** shows operations at commercial service and general aviation airports over the last ten years. General aviation operations did not appear to decline after 9-11 although total operations at Commercial Service Airports declined by approximately 11,000. In 2007, operations at Commercial Service Airports increased significantly in large part because of increases in air service capacity. The decline in GA operations is consistent with the national trends of less discretionary flying due to high fuel costs and the national general aviation fleet growing older and flying fewer hours and therefore generating fewer annual operations.



#### Chart 4-4 Wyoming Annual Aircraft Operations 1997-2007

Commercial Service Airports General Aviation Airports



**Table 4-6** shows the greatest changes in annual operations at individual Wyoming airports during the last ten years. Casper has experienced significantly more growth in operations than any other Wyoming airport. Cheyenne and Sheridan have also grown. Airports with declining operations include Greybull, Guernsey and Wheatland.

| Associated City | 1997   | 2007   | 1997-2007 Change |
|-----------------|--------|--------|------------------|
| Casper          | 41,800 | 61,297 | 19,497           |
| Cheyenne        | 48,324 | 58,953 | 10,629           |
| Cody            | 33,250 | 38,285 | 5,035            |
| Riverton        | 15,080 | 8,423  | (6,657)          |
| Sheridan        | 27,507 | 37,230 | 9,723            |
| Greybull        | 24,600 | 4,175  | (20,425)         |
| Guernsey        | 18,000 | 3,900  | (14,100)         |
| Wheatland       | 11,400 | 3,820  | (7,580)          |
| Dubois          | 1,000  | 5,000  | 4,000            |

Table 4-6Largest Changes in Annual Operations

Source: FAA TAF, Form 5010, 2007 SEH Airport Survey

## 4.5 Forecast Summary

The forecasts prepared in 2005 were updated using 2007 as the base year and 2012, 2017 and 2027 as the forecast reference years. A high and low forecast was prepared using the compound annual growth rates developed for the 2005 forecasts. **Table 4-7** and **Charts 4-5** through **4-7** present a summary of statewide high and low forecasts for passenger enplanements, based aircraft and aircraft operations. Individual airport forecasts are presented in following tables.

Table 4-7 Summary of Statewide Forecasts

|                | 2007    | 2012    |         | 20      | 17      | 20      | 27      | 2007-2027 CAGR |       |  |
|----------------|---------|---------|---------|---------|---------|---------|---------|----------------|-------|--|
|                | Actual  | Low     | High    | Low     | High    | Low     | High    | Low            | High  |  |
| Based Aircraft | 964     | 962     | 1,041   | 966     | 1,148   | 981     | 1,410   | 0.09%          | 1.92% |  |
| Operations     | 425,581 | 428,059 | 456,141 | 430,617 | 491,029 | 435,957 | 577,340 | 0.12%          | 1.54% |  |
| Enplanements   | 495,739 | 527,784 | 547,336 | 562,985 | 604,303 | 644,139 | 736,642 | 1.25%          | 2.00% |  |



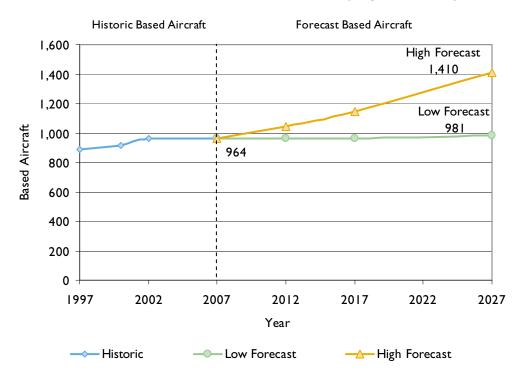
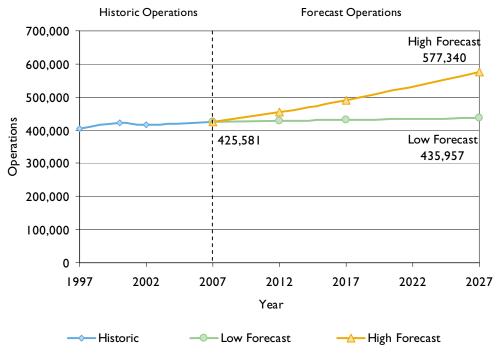
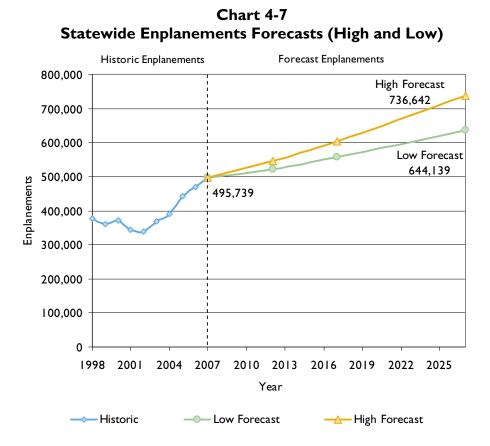
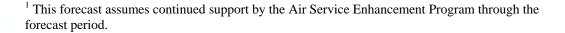





Chart 4-5 Statewide Based Aircraft Forecasts (High and Low)

Chart 4-6 Statewide Operations Forecasts (High and Low)








Over the forecast period, based aircraft are not expected to grow substantially. Some of the based aircraft will be retired and may be replaced. Incrementally at the low end, less than 20 aircraft will be added to the Wyoming fleet. At the high end, as many as 446 aircraft are in the 20 year forecast. If trends persist, most of the aircraft added will be based at Commercial Service Airports. The airports forecast to have the largest based aircraft fleet are: Sheridan, Cheyenne, Casper and Lander.

The forecast for aircraft operations has a wide spread. At the low end operations will increase by approximately 10,400. At the high end, operations could grow statewide by as much as 152,000. Almost two thirds of aircraft operations take place at Wyoming's Commercial Service Airports. The forecast is thus heavily influenced by sustained and developing levels of air service.

The enplanement forecasts are moderate and aggressive. This is because the CAGRs from the 2005 forecasts were applied to 2007 enplanement levels. Passenger activity in 2007 had the benefit and stimulus of revenue guarantees provided by the Air Service Enhancement Program as well as increased oil and gas activity in the state. Over the 20 year forecast period, enplanements could grow by between 148,000 and 240,000 enplanements.<sup>1</sup>

Forecasts for individual airports are presented in Tables 4-8 through 4-11.



STATEWIDE AIRPORT INVENTORY and IMPLEMENTATION PLAN

YOMING



#### Table 4-8 Based Aircraft Forecast

| A            | 2007   | 20  | 12   | 20  | )17  | 20  | 27   | 2007-202 | 2007-2027 CAGR |  |
|--------------|--------|-----|------|-----|------|-----|------|----------|----------------|--|
| Airport Name | Actual | Low | High | Low | High | Low | High | Low      | High           |  |
| Casper       | 85     | 85  | 88   | 85  | 93   | 85  | 103  | 0.00%    | 1.00%          |  |
| Cheyenne     | 77     | 78  | 83   | 79  | 90   | 82  | 107  | 0.32%    | 1.75%          |  |
| Cody         | 57     | 58  | 59   | 59  | 63   | 61  | 70   | 0.32%    | 1.05%          |  |
| Gillette     | 53     | 54  | 56   | 55  | 59   | 56  | 66   | 0.32%    | 1.19%          |  |
| Jackson      | 47     | 48  | 51   | 48  | 56   | 50  | 68   | 0.00%    | 1.99%          |  |
| Laramie      | 39     | 39  | 41   | 38  | 44   | 38  | 49   | (0.17%)  | 1.26%          |  |
| Riverton     | 34     | 34  | 37   | 35  | 40   | 36  | 49   | 0.14%    | 1.92%          |  |
| Rock Springs | 49     | 50  | 52   | 50  | 57   | 52  | 68   | 0.00%    | 1.73%          |  |
| Sheridan     | 88     | 89  | 94   | 91  | 101  | 94  | 119  | 0.32%    | 1.58%          |  |
| Worland      | 13     | 13  | 14   | 13  | 16   | 12  | 20   | (0.26%)  | 2.18%          |  |
| CS Total     | 542    | 548 | 575  | 553 | 619  | 566 | 719  | 0.22%    | 1.42%          |  |
| Afton        | 40     | 41  | 46   | 41  | 56   | 43  | 81   | 0.32%    | 3.75%          |  |
| Douglas      | 37     | 38  | 40   | 38  | 44   | 39  | 54   | 0.32%    | 1.96%          |  |
| Evanston     | 18     | 18  | 20   | 18  | 22   | 18  | 26   | (0.12%)  | 2.05%          |  |
| Greybull     | 27     | 27  | 27   | 27  | 28   | 27  | 29   | 0.00%    | 0.40%          |  |
| Pinedale     | 17     | 17  | 19   | 18  | 22   | 18  | 29   | 0.32%    | 2.86%          |  |
| Saratoga     | 27     | 28  | 30   | 29  | 35   | 31  | 47   | 0.77%    | 2.92%          |  |
| Big Piney    | 7      | 7   | 8    | 7   | 9    | 7   | 11   | 0.32%    | 2.29%          |  |
| Buffalo      | 20     | 15  | 21   | 12  | 22   | 7   | 25   | (5.34%)  | 1.12%          |  |
| Guernsey     | 6      | 5   | 7    | 4   | 7    | 2   | 9    | (4.48%)  | 2.38%          |  |
| Kemmerer     | 7      | 7   | 8    | 7   | 10   | 7   | 14   | 0.32%    | 3.53%          |  |
| Lander       | 55     | 55  | 63   | 56  | 75   | 57  | 106  | 0.14%    | 3.53%          |  |
| Newcastle    | 11     | 11  | 12   | 11  | 14   | 11  | 17   | (0.18%)  | 2.43%          |  |
| Powell       | 17     | 17  | 18   | 18  | 20   | 18  | 25   | 0.32%    | 2.05%          |  |
| Rawlins      | 22     | 22  | 24   | 22  | 26   | 22  | 32   | (0.05%)  | 1.96%          |  |
| Torrington   | 27     | 27  | 30   | 27  | 35   | 27  | 47   | (0.04%)  | 2.94%          |  |
| Wheatland    | 14     | 14  | 14   | 13  | 15   | 12  | 15   | (0.62%)  | 0.40%          |  |



#### Table 4-8 (Continued) Based Aircraft Forecast

| Airport Name             | 2007   | 20  | 12    | 20  | 17    | 20  | 27    | 2007-2027 CAGR |       |
|--------------------------|--------|-----|-------|-----|-------|-----|-------|----------------|-------|
| Airport Name             | Actual | Low | High  | Low | High  | Low | High  | Low            | High  |
| Cokeville                | 2      | 0   | 3     | 0   | 4     | 0   | 8     | (100.00%)      | 7.18% |
| Cowley                   | 10     | 10  | 11    | 10  | 13    | 10  | 19    | 0.01%          | 3.35% |
| Dixon                    | 9      | 9   | 10    | 9   | 11    | 10  | 13    | 0.32%          | 2.05% |
| Dubois                   | 11     | 11  | 13    | 11  | 15    | 11  | 22    | 0.14%          | 3.81% |
| Fort Bridger             | 10     | 9   | 10    | 9   | 10    | 8   | 11    | (1.11%)        | 0.40% |
| Glendo (non-paved)       | 0      | 0   | 0     | 0   | 0     | 0   | 0     | 0.00%          | 0.40% |
| Green River (non-paved)  | 0      | 0   | 0     | 0   | 0     | 0   | 0     | 0.00%          | 0.40% |
| Hulett                   | 5      | 6   | 7     | 8   | 10    | 13  | 20    | 4.73%          | 7.60% |
| Lusk                     | 2      | 2   | 3     | 1   | 4     | 1   | 7     | (3.41%)        | 6.46% |
| Medicine Bow (non-paved) | 0      | 0   | 0     | 0   | 0     | 0   | 0     | 0.00%          | 0.40% |
| Pine Bluffs              | 9      | 9   | 10    | 9   | 10    | 10  | 12    | 0.32%          | 1.45% |
| Shoshoni (non-paved)     | 3      | 3   | 3     | 3   | 3     | 3   | 3     | 0.00%          | 0.40% |
| Thermopolis              | 8      | 5   | 8     | 4   | 8     | 2   | 9     | (7.73%)        | 0.40% |
| Upton (non-paved)        | 1      | 1   | 1     | 1   | 1     | 1   | 1     | 0.00%          | 0.40% |
| GA Total                 | 422    | 414 | 466   | 413 | 529   | 415 | 692   | (0.09%)        | 2.50% |
| System Total             | 964    | 962 | 1,041 | 966 | 1,148 | 981 | 1,410 | 0.09%          | 1.92% |



Table 4-9 Forecast of Aircraft Operations

| Airport Name | 2007    | 20      | 12      | 20      | 17      | 20      | 27      | 2007-2027 CAGR |       |
|--------------|---------|---------|---------|---------|---------|---------|---------|----------------|-------|
| Airport Name | Actual  | Low     | High    | Low     | High    | Low     | High    | Low            | High  |
| Casper       | 61,297  | 61,297  | 62,939  | 61,297  | 64,624  | 61,297  | 68,132  | 0.00%          | 0.53% |
| Cheyenne     | 58,953  | 58,953  | 59,932  | 58,953  | 60,928  | 58,953  | 62,968  | 0.00%          | 0.33% |
| Cody         | 38,285  | 38,901  | 40,198  | 39,528  | 42,207  | 40,811  | 46,530  | 0.32%          | 0.98% |
| Gillette     | 19,105  | 19,105  | 19,578  | 19,105  | 20,062  | 19,105  | 21,067  | 0.00%          | 0.49% |
| Jackson      | 30,605  | 31,098  | 37,343  | 31,599  | 45,565  | 32,624  | 67,837  | 0.32%          | 4.06% |
| Laramie      | 10,090  | 10,090  | 10,340  | 10,090  | 10,595  | 10,090  | 11,126  | 0.00%          | 0.49% |
| Riverton     | 8,423   | 8,478   | 9,694   | 8,533   | 11,156  | 8,645   | 14,776  | 0.13%          | 2.85% |
| Rock Springs | 17,017  | 17,291  | 18,170  | 17,569  | 19,401  | 18,140  | 22,120  | 0.32%          | 1.32% |
| Sheridan     | 37,230  | 37,830  | 41,186  | 38,439  | 45,561  | 39,687  | 55,757  | 0.32%          | 2.04% |
| Worland      | 4,180   | 4,247   | 4,790   | 4,316   | 5,488   | 4,456   | 7,205   | 0.32%          | 2.76% |
| CS Total     | 285,185 | 287,290 | 304,170 | 289,429 | 325,587 | 293,808 | 377,518 | 0.15%          | 1.41% |
| Afton        | 12,200  | 12,396  | 14,736  | 12,596  | 17,800  | 13,005  | 25,971  | 0.32%          | 3.85% |
| Douglas      | 5,585   | 5,521   | 5,695   | 5,458   | 5,807   | 5,334   | 6,037   | (0.23%)        | 0.39% |
| Evanston     | 6,080   | 6,178   | 6,859   | 6,277   | 7,737   | 6,481   | 9,847   | 0.32%          | 2.44% |
| Greybull     | 4,175   | 4,217   | 4,257   | 4,259   | 4,341   | 4,345   | 4,513   | 0.20%          | 0.39% |
| Pinedale     | 9,516   | 9,669   | 9,766   | 9,825   | 10,023  | 10,144  | 10,556  | 0.32%          | 0.52% |
| Saratoga     | 8,965   | 9,109   | 9,596   | 9,256   | 10,272  | 9,557   | 11,769  | 0.32%          | 1.37% |
| Big Piney    | 3,500   | 3,556   | 3,904   | 3,614   | 4,355   | 3,731   | 5,419   | 0.32%          | 2.21% |
| Buffalo      | 7,320   | 7,438   | 8,799   | 7,558   | 10,578  | 7,803   | 15,285  | 0.32%          | 3.75% |
| Guernsey     | 3,900   | 3,900   | 3,900   | 3,900   | 3,900   | 3,900   | 3,900   | 0.00%          | 0.00% |
| Kemmerer     | 3,400   | 3,329   | 3,463   | 3,260   | 3,528   | 3,126   | 3,661   | (0.42%)        | 0.37% |
| Lander       | 11,180  | 11,024  | 11,394  | 10,871  | 11,612  | 10,570  | 12,061  | (0.28%)        | 0.38% |
| Newcastle    | 5,000   | 5,081   | 5,437   | 5,162   | 5,912   | 5,330   | 6,991   | 0.32%          | 1.69% |
| Powell       | 3,130   | 2,907   | 3,198   | 2,699   | 3,267   | 2,328   | 3,410   | (1.47%)        | 0.43% |
| Rawlins      | 12,000  | 12,193  | 13,683  | 12,390  | 15,602  | 12,792  | 20,286  | 0.32%          | 2.66% |
| Torrington   | 4,431   | 4,300   | 4,536   | 4,172   | 4,644   | 3,929   | 4,867   | (0.60%)        | 0.47% |
| Wheatland    | 3,820   | 3,820   | 3,897   | 3,820   | 3,976   | 3,820   | 4,137   | 0.00%          | 0.40% |



## Table 4-9 (Continued) Forecast of Aircraft Operations

| Airport Name             | 2007    | 20      | 12      | 20      | 17      | 20      | 27      | 2007-2027 CAGR |       |
|--------------------------|---------|---------|---------|---------|---------|---------|---------|----------------|-------|
| All port Maine           | Actual  | Low     | High    | Low     | High    | Low     | High    | Low            | High  |
| Cokeville                | 1,250   | 1,281   | 1,811   | 1,313   | 2,625   | 1,378   | 5,511   | 0.49%          | 7.70% |
| Cowley                   | 4,175   | 4,175   | 4,259   | 4,175   | 4,345   | 4,175   | 4,522   | 0.00%          | 0.40% |
| Dixon                    | 2,600   | 2,600   | 2,651   | 2,600   | 2,703   | 2,600   | 2,810   | 0.00%          | 0.39% |
| Dubois                   | 5,000   | 5,000   | 5,825   | 5,000   | 6,785   | 5,000   | 9,208   | 0.00%          | 3.10% |
| Fort Bridger             | 3,500   | 3,460   | 3,567   | 3,420   | 3,635   | 3,342   | 3,776   | (0.23%)        | 0.38% |
| Glendo (non-paved)       | 450     | 450     | 450     | 450     | 450     | 450     | 450     | 0.00%          | 0.00% |
| Green River (non-paved)  | 34      | 34      | 34      | 34      | 34      | 34      | 34      | 0.00%          | 0.00% |
| Hulett                   | 1,400   | 1,400   | 1,843   | 1,400   | 2,426   | 1,400   | 4,203   | 0.00%          | 5.65% |
| Lusk                     | 7,030   | 7,030   | 7,165   | 7,030   | 7,302   | 7,030   | 7,584   | 0.00%          | 0.38% |
| Medicine Bow (non-paved) | 40      | 40      | 40      | 40      | 40      | 40      | 40      | 0.00%          | 0.00% |
| Pine Bluffs              | 8,000   | 8,000   | 8,165   | 8,000   | 8,334   | 8,000   | 8,682   | 0.00%          | 0.41% |
| Shoshoni (non-paved)     | 75      | 75      | 75      | 75      | 75      | 75      | 75      | 0.00%          | 0.00% |
| Thermopolis              | 2,580   | 2,526   | 2,906   | 2,474   | 3,274   | 2,372   | 4,154   | (0.42%)        | 2.41% |
| Upton (non-paved)        | 60      | 60      | 60      | 60      | 60      | 60      | 60      | 0.00%          | 0.00% |
| GA Total                 | 140,396 | 140,769 | 151,971 | 141,188 | 165,442 | 142,151 | 199,819 | 0.06%          | 1.78% |
| System Total             | 425,581 | 428,059 | 456,141 | 430,617 | 491,029 | 435,957 | 577,340 | 0.12%          | 1.54% |



Table 4-10 Passenger Enplanements Forecasts: Low Growth

| Associated City | 2007-2027 CAGR | 2007    | 2012    | 2017    | 2022    | 2027    |
|-----------------|----------------|---------|---------|---------|---------|---------|
| Associated City | Low            | 2007    | 2012    | 2017    |         |         |
| Casper          | 0.28%          | 76,908  | 77,991  | 79,089  | 80,202  | 81,331  |
| Cheyenne        | 0.32%          | 16,766  | 17,036  | 17,310  | 17,589  | 17,872  |
| Cody            | 0.46%          | 26,799  | 27,421  | 28,058  | 28,709  | 29,375  |
| Gillette        | 1.19%          | 25,647  | 27,210  | 28,868  | 30,627  | 32,493  |
| Jackson         | 1.99%          | 277,361 | 306,079 | 337,770 | 372,743 | 411,336 |
| Laramie         | (0.17%)        | 9,939   | 9,855   | 9,771   | 9,689   | 9,606   |
| Riverton        | 0.14%          | 15,831  | 15,942  | 16,054  | 16,167  | 16,280  |
| Rock Springs    | (0.77%)        | 21,791  | 20,965  | 20,170  | 19,405  | 18,670  |
| Sheridan        | 0.60%          | 20,978  | 21,615  | 22,271  | 22,947  | 23,644  |
| Worland         | (0.26%)        | 3,719   | 3,671   | 3,623   | 3,577   | 3,530   |
| Total           |                | 495,739 | 527,784 | 562,985 | 601,654 | 644,139 |



Table 4-11Passenger Enplanements Forecasts: High Growth

| Associated City | 2007-2027 CAGR | 2007 2012 | 2017    | 2022    | 2027    |         |
|-----------------|----------------|-----------|---------|---------|---------|---------|
| Associated City | High           | 2007      | 2012    | 2017    | 2022    | 2027    |
| Casper          | 2.00%          | 76,908    | 84,913  | 93,750  | 103,508 | 114,281 |
| Cheyenne        | 2.00%          | 16,766    | 18,511  | 20,438  | 22,565  | 24,913  |
| Cody            | 2.00%          | 26,799    | 29,588  | 32,668  | 36,068  | 39,822  |
| Gillette        | 2.00%          | 25,647    | 28,316  | 31,264  | 34,517  | 38,110  |
| Jackson         | 2.00%          | 277,361   | 306,229 | 338,102 | 373,291 | 412,144 |
| Laramie         | 2.00%          | 9,939     | 10,973  | 12,116  | 13,377  | 14,769  |
| Riverton        | 2.00%          | 15,831    | 17,479  | 19,298  | 21,306  | 23,524  |
| Rock Springs    | 2.00%          | 21,791    | 24,059  | 26,563  | 29,328  | 32,380  |
| Sheridan        | 2.00%          | 20,978    | 23,161  | 25,572  | 28,234  | 31,172  |
| Worland         | 2.00%          | 3,719     | 4,106   | 4,533   | 5,005   | 5,526   |
| Total           |                | 495,739   | 547,336 | 604,303 | 667,199 | 736,642 |

## 4.6 Capacity Analysis (Annual Service Volume)

Using the 2007 operations shown in **Table 4-9**, the annual service volume (ASV) for each airport was calculated. Annual Service Volume (as defined in AC 150/5060-5 *Airport Capacity and Delay*) is a reasonable estimate of an airport's annual capacity. It accounts for differences in runway use, aircraft mix, weather conditions, etc., that would be encountered over a year's time.

For purposes of calculating the ASV, some assumptions were made concerning the users of each airport. It was assumed that all air carrier, air taxi/air charter and military operations were conducted by aircraft over 12,500 pounds maximum takeoff weight and all general aviation itinerant and general aviation local operations were conducted by aircraft under 12,500 pounds maximum takeoff weight.

The characteristics of the runway configuration at each airport were combined with the main users and uses to determine the annual service volume using the calculations defined in AC 150/5060-5. The ASV for each airport and the total operations for 2007 and the high forecast operations for 2027 are shown in **Table 4-12**. Using ASV as a deciding factor, it can be seen that each airport has sufficient capacity to meet the demand (annual operations) identified through the year 2027.

| Associated City | 2007 Operations | 2027 High Forecast<br>Operations | Annual Service<br>Volume (ASV) |
|-----------------|-----------------|----------------------------------|--------------------------------|
| Casper          | 61,297          | 68,132                           | 200,000                        |
| Cheyenne        | 58,953          | 62,968                           | 215,000                        |
| Cody            | 38,285          | 46,530                           | 230,000                        |
| Gillette        | 19,105          | 21,067                           | 200,000                        |
| Jackson         | 30,605          | 67,837                           | 195,000                        |
| Laramie         | 10,090          | 11,126                           | 200,000                        |
| Riverton        | 8,423           | 14,776                           | 200,000                        |
| Rock Springs    | 17,017          | 22,120                           | 200,000                        |
| Sheridan        | 37,230          | 55,757                           | 230,000                        |
| Worland         | 4,180           | 7,205                            | 200,000                        |
| Afton           | 12,200          | 25,971                           | 230,000                        |
| Douglas         | 5,585           | 6,037                            | 230,000                        |
| Evanston        | 6,080           | 9,847                            | 230,000                        |
| Greybull        | 4,175           | 4,513                            | 230,000                        |
| Pinedale        | 9,516           | 10,556                           | 195,000                        |
| Saratoga        | 8,965           | 11,769                           | 230,000                        |

Table 4-12 Annual Service Volume



| Associated City          | 2007 Operations | 2027 High Forecast<br>Operations | Annual Service<br>Volume (ASV) |
|--------------------------|-----------------|----------------------------------|--------------------------------|
| Big Piney                | 3,500           | 5,419                            | 230,000                        |
| Buffalo                  | 7,320           | 15,285                           | 230,000                        |
| Guernsey                 | 3,900           | 3,900                            | 205,000                        |
| Kemmerer                 | 3,400           | 3,661                            | 230,000                        |
| Lander                   | 11,180          | 12,061                           | 230,000                        |
| Newcastle                | 5,000           | 6,991                            | 200,000                        |
| Powell                   | 3,130           | 3,410                            | 230,000                        |
| Rawlins                  | 12,000          | 20,286                           | 200,000                        |
| Torrington               | 4,431           | 4,867                            | 230,000                        |
| Wheatland                | 3,820           | 4,137                            | 230,000                        |
| Cokeville                | 1,250           | 5,511                            | 230,000                        |
| Cowley                   | 4,175           | 4,522                            | 230,000                        |
| Dixon                    | 2,600           | 2,810                            | 230,000                        |
| Dubois                   | 5,000           | 9,208                            | 230,000                        |
| Fort Bridger             | 3,500           | 3,776                            | 230,000                        |
| Glendo (non-paved)       | 450             | 450                              | 230,000                        |
| Green River (non-paved)  | 34              | 34                               | 230,000                        |
| Hulett                   | 1,400           | 4,203                            | 230,000                        |
| Lusk                     | 7,030           | 7,584                            | 230,000                        |
| Medicine Bow (non-paved) | 40              | 40                               | 230,000                        |
| Pine Bluffs              | 8,000           | 8,682                            | 230,000                        |
| Shoshoni (non-paved)     | 75              | 75                               | 230,000                        |
| Thermopolis              | 2,580           | 4,154                            | 230,000                        |
| Upton (non-paved)        | 60              | 60                               | 230,000                        |

#### Table 4-12 (Continued) Annual Service Volume



# 5.0 System Objectives and Performance5.1 Overview

Facilities and services available at an airport largely define the types of aircraft and users able to operate at an airport. Attributes were assigned previously to the four classifications of airports in Wyoming. In keeping with the Vision, Goals and Objectives for the Wyoming Aviation System and in an effort to provide consistency across the system, minimum facilities and service objectives by classification of airport have been established. It needs to be stressed that these are minimum requirements. Individual airports may actually have greater objectives based on airport specific users but each should strive to meet the minimum objectives set for their individual classification. The minimum objectives have been established to provide adequate and safe facilities and services to meet the roles and attributes established for each classification. All objectives need to be justified and approved through the local master planning and environmental processes. Airport Facilities and Services Objectives are subdivided by Airside, Landside, Services and Administration.

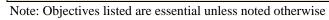
The terms *essential*, *suggested*, and *not an objective* are included in the objectives. The term *essential* means that Aeronautics believes these items to be necessary for the category shown and that airport sponsors should make every effort to make sure these items are in place at their airport. A *suggested* facility is one that Aeronautics would like to see at the airport but is not considered in the system analysis, and *not an objective* simply means that Aeronautics does not have an objective for that particular classification or facility, service, etc.

It was determined that airports in the Local Airport classification needed to be subdivided into paved and non-paved facilities. As such, facility and service objectives were developed for both of these sub-classifications within the Local Airport classification.

The minimum objectives by classification of airport are shown in **Tables 5-1** through **5-5**. The objectives have been applied to each airport and are documented on each airport's individual Airport Report Card included in **Chapter 9**. Facility and service objectives are sorted alphabetically and applied to each airport in **Appendix A**. Supporting documentation for each objective, airports not meeting an objective and system performance related to each objective is presented following the minimum system objectives **Tables 5-1** through **5-5**.

The objectives for Administration include reports, plans, maps and actions and are discussed in the following sections. Throughout this section, *on record with Aeronautics* means that a copy of the report, plan or map has been sent by the sponsor to Aeronautics and that Aeronautics has acknowledged receipt.




|                                                               | Table 5-1                                             |  |  |
|---------------------------------------------------------------|-------------------------------------------------------|--|--|
| Commercial Service Airports - Facility and Service Objectives |                                                       |  |  |
|                                                               | AIRSIDE                                               |  |  |
| ARC                                                           | C-II                                                  |  |  |
| Primary Runway Length                                         | 75% of Large Airplanes at 60% Useful Load             |  |  |
| Primary Runway Width                                          | 100 Feet                                              |  |  |
| Primary Runway Lights                                         | HIRL                                                  |  |  |
| Primary Runway Strength                                       | 55,000 lbs Dual                                       |  |  |
| Taxiway                                                       | Full Parallel, 35 Feet Width                          |  |  |
| Taxiway Lights                                                | MITL                                                  |  |  |
| Primary Approach Type                                         | Precision                                             |  |  |
| Primary Approach Lighting System (ALS)                        | MALSR                                                 |  |  |
|                                                               | PAPI or VASI – Both Runway Ends                       |  |  |
| Visual Aids                                                   | REIL or ALS – Both Runway Ends                        |  |  |
| visual Alus                                                   | Beacon                                                |  |  |
|                                                               | Lighted Wind Cone                                     |  |  |
| Wind Coverage                                                 | $\geq$ 95% Coverage                                   |  |  |
| Runway Safety Area (RSA)                                      | Standard RSA on All Paved Runways                     |  |  |
|                                                               | LANDSIDE                                              |  |  |
| Weather Reporting                                             | AWOS/ASOS                                             |  |  |
| Terminal                                                      | Terminal                                              |  |  |
| Perimeter Fencing                                             | Security or Wildlife Fence                            |  |  |
| Hangars                                                       | 100% of Based Aircraft in Hangars                     |  |  |
| Lighted Hangar Area                                           | Lighted Hangar Area                                   |  |  |
| Paved Auto Parking                                            | Paved Auto Parking                                    |  |  |
|                                                               | SERVICES                                              |  |  |
| FBO                                                           | Suggested                                             |  |  |
| Fuel                                                          | Jet A and 100LL                                       |  |  |
| Ground Transportation                                         | On-Airport Rental Car                                 |  |  |
| Pilot Lounge/Planning Room                                    | Pilot Lounge/Planning Room                            |  |  |
| Public Restrooms                                              | Public Restrooms - 24/7                               |  |  |
| Food                                                          | Restaurant Suggested                                  |  |  |
| Public Phone                                                  | Public Phone - 24/7                                   |  |  |
| Aircraft Maintenance                                          | Major Airframe & Powerplant (A & P)                   |  |  |
| Aircraft Deicing                                              | Aircraft Deicing                                      |  |  |
| Aircraft Deicing Containment System                           | Containment System                                    |  |  |
|                                                               | MINISTRATION                                          |  |  |
| Land Use Protection Plan                                      | On Record with Aeronautics                            |  |  |
| Current Master Plan                                           | On Record with Aeronautics and Less Than 10 Years Old |  |  |
| Current Airport Layout Plan                                   | On Record with Aeronautics and Less Than 10 Years Old |  |  |
| Minimum Standards                                             | On Record with Aeronautics                            |  |  |
| Pavement Management Plan                                      | On Record with Aeronautics                            |  |  |
| Current Noise Contour Map                                     | On Record with Aeronautics and Less Than 10 Years Old |  |  |
| Legislative Liaison                                           | Legislative Liaison                                   |  |  |
| -                                                             | •                                                     |  |  |
| Airport Manager                                               | Airport Manager                                       |  |  |
| RPZ Ownership                                                 | Fee/Easement Ownership of All Existing RPZs           |  |  |



|                                                            | Table 5-2                                             |  |  |
|------------------------------------------------------------|-------------------------------------------------------|--|--|
| <b>Business Airports - Facility and Service Objectives</b> |                                                       |  |  |
| -                                                          | AIRSIDE                                               |  |  |
| ARC                                                        | C-II                                                  |  |  |
| Primary Runway Length                                      | 75% of Large Airplanes at 60% Useful Load             |  |  |
| Primary Runway Width                                       | 100 Feet                                              |  |  |
| Primary Runway Lights                                      | MIRL                                                  |  |  |
| Primary Runway Strength                                    | 30,000 lbs Single                                     |  |  |
| Taxiway                                                    | Full Parallel, 35 Feet Width                          |  |  |
| Taxiway Lights                                             | MITL                                                  |  |  |
| Primary Approach Type                                      | Non-Precision                                         |  |  |
| Primary Approach Lighting System (ALS)                     | MALSR Suggested                                       |  |  |
|                                                            | PAPI or VASI – Both Runway Ends                       |  |  |
| X7' 1 A ' 1                                                | REILs or ALS – Both Runway Ends                       |  |  |
| Visual Aids                                                | Beacon                                                |  |  |
|                                                            | Lighted Wind Cone                                     |  |  |
| Wind Coverage                                              | $\geq$ 95% Coverage                                   |  |  |
| Runway Safety Area (RSA)                                   | Standard RSA on All Paved Runways                     |  |  |
|                                                            | LANDSIDE                                              |  |  |
| Weather Reporting                                          | AWOS/ASOS                                             |  |  |
| Terminal                                                   | Terminal                                              |  |  |
| Perimeter Fencing                                          | Wildlife Fence                                        |  |  |
| Hangars                                                    | 100% of Based Aircraft in Hangars                     |  |  |
| Lighted Hangar Area                                        | Lighted Hangar Area                                   |  |  |
| Paved Auto Parking                                         | Paved Auto Parking                                    |  |  |
|                                                            | SERVICES                                              |  |  |
| FBO                                                        | Suggested                                             |  |  |
| Fuel                                                       | Jet A and 100LL                                       |  |  |
| Ground Transportation                                      | Courtesy Car                                          |  |  |
| Pilot Lounge/Planning Room                                 | Pilot Lounge/Planning Room                            |  |  |
| Public Restrooms                                           | Public Restrooms – 24/7                               |  |  |
| Food                                                       | Vending Machines Suggested                            |  |  |
| Public Phone                                               | Public Phone – 24/7                                   |  |  |
| Aircraft Maintenance                                       | Major Airframe & Powerplant (A & P)                   |  |  |
| Aircraft Deicing                                           | Aircraft Deicing                                      |  |  |
| Aircraft Deicing Containment System                        | Suggested                                             |  |  |
| AD                                                         | MINISTRATION                                          |  |  |
| Land Use Protection Plan                                   | On Record with Aeronautics                            |  |  |
| Current Master Plan                                        | On Record with Aeronautics and Less Than 10 Years Old |  |  |
| Current Airport Layout Plan                                | On Record with Aeronautics and Less Than 5 Years Old  |  |  |
| Minimum Standards                                          | On Record with Aeronautics                            |  |  |
| Pavement Management Plan                                   | On Record with Aeronautics                            |  |  |
| Current Noise Contour Map                                  | On Record with Aeronautics and Less Than 10 Years Old |  |  |
| Legislative Liaison                                        | Legislative Liaison                                   |  |  |
| Airport Manager                                            | Airport Manager                                       |  |  |
| RPZ Ownership                                              | Fee/Easement Ownership of All Existing RPZs           |  |  |
| I                                                          | r                                                     |  |  |



|                                                         | Table 5-3                                                                    |  |  |
|---------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| Intermediate Airports - Facility and Service Objectives |                                                                              |  |  |
|                                                         | AIRSIDE                                                                      |  |  |
| ARC                                                     | B-II                                                                         |  |  |
| Primary Runway Length                                   | 95% of Small Airplanes                                                       |  |  |
| Primary Runway Width                                    | 75 Feet                                                                      |  |  |
| Primary Runway Lights                                   | MIRL                                                                         |  |  |
| Primary Runway Strength                                 | 20,000 lbs Single                                                            |  |  |
| Taxiway                                                 | Partial Parallel, Connector and/or Turn Arounds - 35 Feet Width              |  |  |
| Taxiway Lights                                          | MITL                                                                         |  |  |
| Primary Approach Type                                   | Non-Precision                                                                |  |  |
| Primary Approach Lighting System (ALS)                  | Not an Objective                                                             |  |  |
| Visual Aids                                             | PAPI or VASI – Both Runway Ends<br>REILs or ALS – Both Runway Ends<br>Beacon |  |  |
|                                                         | Lighted Wind Cone                                                            |  |  |
| Wind Coverage                                           | $\geq$ 95% Coverage                                                          |  |  |
| Runway Safety Area (RSA)                                | Standard RSA on All Paved Runways                                            |  |  |
|                                                         | LANDSIDE                                                                     |  |  |
| Weather Reporting                                       | AWOS/ASOS                                                                    |  |  |
| Terminal                                                | Terminal                                                                     |  |  |
| Perimeter Fencing                                       | Wildlife Fence                                                               |  |  |
| Hangars                                                 | 75% of Based Aircraft in Hangars                                             |  |  |
| Lighted Hangar Area                                     | Suggested                                                                    |  |  |
| Paved Auto Parking                                      | Suggested                                                                    |  |  |
| SERVICES                                                |                                                                              |  |  |
| FBO                                                     | Suggested                                                                    |  |  |
| Fuel                                                    | 100LL                                                                        |  |  |
| Ground Transportation                                   | Courtesy Car                                                                 |  |  |
| Pilot Lounge/Planning Room                              | Suggested                                                                    |  |  |
| Public Restrooms                                        | Public Restrooms – 24/7                                                      |  |  |
| Food                                                    | Vending Machines Suggested                                                   |  |  |
| Public Phone                                            | Public Phone – 24/7                                                          |  |  |
| Aircraft Maintenance                                    | Minor Airframe & Powerplant (A & P)                                          |  |  |
| Aircraft Deicing                                        | Not an Objective                                                             |  |  |
| Aircraft Deicing Containment System                     | Not an Objective                                                             |  |  |
|                                                         | MINISTRATION                                                                 |  |  |
| Land Use Protection Plan                                | On Record with Aeronautics                                                   |  |  |
| Current Master Plan                                     | On Record with Aeronautics and Less Than 10 Years Old                        |  |  |
| Current Airport Layout Plan                             | On Record with Aeronautics and Less Than 5 Years Old                         |  |  |
| Minimum Standards                                       | On Record with Aeronautics                                                   |  |  |
| Pavement Management Plan                                | On Record with Aeronautics                                                   |  |  |
| Current Noise Contour Map                               | On Record with Aeronautics and Less Than 10 Years Old                        |  |  |
| Legislative Liaison                                     | Legislative Liaison                                                          |  |  |
| Airport Manager                                         | Airport Manager                                                              |  |  |
| RPZ Ownership                                           | Fee/Easement Ownership of All Existing RPZs                                  |  |  |
| *                                                       | noted otherwise                                                              |  |  |





|                                                        | Table 5-4                                             |  |  |
|--------------------------------------------------------|-------------------------------------------------------|--|--|
| Local Paved Airports - Facility and Service Objectives |                                                       |  |  |
|                                                        | AIRSIDE                                               |  |  |
| ARC                                                    | B-II                                                  |  |  |
| Primary Runway Length                                  | Maintain Existing Length                              |  |  |
| Primary Runway Width                                   | 75 Feet                                               |  |  |
| Primary Runway Lights                                  | MIRL                                                  |  |  |
| Primary Runway Strength                                | 12,500 lbs Single                                     |  |  |
| Taxiway                                                | Maintain Existing Taxiway                             |  |  |
| Taxiway Lights                                         | Reflectors (MITL Suggested)                           |  |  |
| Primary Approach Type                                  | Not an Objective                                      |  |  |
| Primary Approach Lighting System (ALS)                 | Not an Objective                                      |  |  |
|                                                        | PAPI – One Runway End (Both Ends Suggested)           |  |  |
| X7' 1 A ' 1                                            | REIL or ALS – One Runway End (Both Ends Suggested)    |  |  |
| Visual Aids                                            | Beacon                                                |  |  |
|                                                        | Lighted Wind Cone                                     |  |  |
| Wind Coverage                                          | $\geq$ 95% Coverage Suggested                         |  |  |
| Runway Safety Area (RSA)                               | Standard RSA on All Paved Runways                     |  |  |
|                                                        | LANDSIDE                                              |  |  |
| Weather Reporting                                      | AWOS/ASOS                                             |  |  |
| Terminal                                               | Not an Objective                                      |  |  |
| Perimeter Fencing                                      | Wildlife Fence                                        |  |  |
| Hangars                                                | 50% of Based Aircraft in Hangars                      |  |  |
| Lighted Hangar Area                                    | Not an Objective                                      |  |  |
| Paved Auto Parking                                     | Suggested                                             |  |  |
|                                                        | SERVICES                                              |  |  |
| FBO                                                    | Suggested                                             |  |  |
| Fuel                                                   | Suggested                                             |  |  |
| Ground Transportation                                  | Suggested                                             |  |  |
| Pilot Lounge/Planning Room                             | Suggested                                             |  |  |
| Public Restrooms                                       | Suggested                                             |  |  |
| Food                                                   | Not an Objective                                      |  |  |
| Public Phone                                           | Public Phone – 24/7                                   |  |  |
| Aircraft Maintenance                                   | Not an Objective                                      |  |  |
| Aircraft Deicing                                       | Not an Objective                                      |  |  |
| Aircraft Deicing Containment System                    | Not an Objective                                      |  |  |
| AD                                                     | MINISTRATION                                          |  |  |
| Land Use Protection Plan                               | On Record with Aeronautics                            |  |  |
| Current Master Plan                                    | Suggested On Record and Less Than 15 Years Old        |  |  |
| Current Airport Layout Plan                            | On Record with Aeronautics and Less Than 10 Years Old |  |  |
| Minimum Standards                                      | Suggested                                             |  |  |
| Pavement Management Plan                               | On record with Aeronautics                            |  |  |
| Current Noise Contour Map                              | Suggested                                             |  |  |
| Legislative Liaison                                    | Suggested                                             |  |  |
| Airport Manager                                        | Airport Manager                                       |  |  |
| RPZ Ownership                                          | Suggested                                             |  |  |



| Table 5-5<br>Local Non-Paved Airports - Facility and Service Objectives |                                                |  |  |  |
|-------------------------------------------------------------------------|------------------------------------------------|--|--|--|
|                                                                         |                                                |  |  |  |
| ARC                                                                     | AIRSIDE<br>A-II                                |  |  |  |
|                                                                         | Maintain Existing Length                       |  |  |  |
| Primary Runway Length                                                   | 0 0                                            |  |  |  |
| Primary Runway Width                                                    | Maintain Existing Width                        |  |  |  |
| Primary Runway Lights                                                   | Runway Edge Markers                            |  |  |  |
| Primary Runway Strength                                                 | Not an Objective                               |  |  |  |
| Taxiway                                                                 | Maintain Existing Taxiway                      |  |  |  |
| Taxiway Lights                                                          | Not an Objective                               |  |  |  |
| Primary Approach Type                                                   | Not an Objective                               |  |  |  |
| Primary Approach Lighting System (ALS)                                  |                                                |  |  |  |
|                                                                         | PAPI – Not an Objective                        |  |  |  |
| Visual Aids                                                             | REIL or ALS – Not an Objective                 |  |  |  |
|                                                                         | Beacon – Not an Objective                      |  |  |  |
|                                                                         | Wind Cone                                      |  |  |  |
| Wind Coverage                                                           | ≥95% Coverage Suggested                        |  |  |  |
| Runway Safety Area (RSA)                                                | Not an Objective                               |  |  |  |
|                                                                         | LANDSIDE                                       |  |  |  |
| Weather Reporting                                                       | Not an Objective                               |  |  |  |
| Terminal                                                                | Not an Objective                               |  |  |  |
| Perimeter Fencing                                                       | Field Fence (4-Strand Barbed Wire)             |  |  |  |
| Hangars                                                                 | 50% of Based Aircraft in Hangars               |  |  |  |
| Lighted Hangar Area                                                     | Not an Objective                               |  |  |  |
| Paved Auto Parking                                                      | Not an Objective                               |  |  |  |
|                                                                         | SERVICES                                       |  |  |  |
| FBO                                                                     | Not an Objective                               |  |  |  |
| Fuel                                                                    | Not an Objective                               |  |  |  |
| Ground Transportation                                                   | Not an Objective                               |  |  |  |
| Pilot Lounge/Planning Room                                              | Not an Objective                               |  |  |  |
| Public Restrooms                                                        | Suggested                                      |  |  |  |
| Food                                                                    | Not an Objective                               |  |  |  |
| Public Phone - 24/7                                                     | Suggested                                      |  |  |  |
| Aircraft Maintenance                                                    | Not an Objective                               |  |  |  |
| Aircraft Deicing                                                        | Not an Objective                               |  |  |  |
| Aircraft Deicing Containment System                                     | Not an Objective                               |  |  |  |
|                                                                         | MINISTRATION                                   |  |  |  |
| Land Use Protection Plan                                                | Not an Objective                               |  |  |  |
| Current Master Plan                                                     | Suggested On Record and Less Than 15 Years Old |  |  |  |
| Current Airport Layout Plan                                             | Suggested On Record and Less Than 10 Years Old |  |  |  |
| Minimum Standards                                                       | Not an Objective                               |  |  |  |
| Pavement Management Plan                                                | Not an Objective                               |  |  |  |
| Current Noise Contour Map                                               | Not an Objective                               |  |  |  |
| Legislative Liaison                                                     | Not an Objective                               |  |  |  |
| Airport Manager                                                         | Suggested                                      |  |  |  |
|                                                                         |                                                |  |  |  |
| RPZ Ownership                                                           | Suggested                                      |  |  |  |



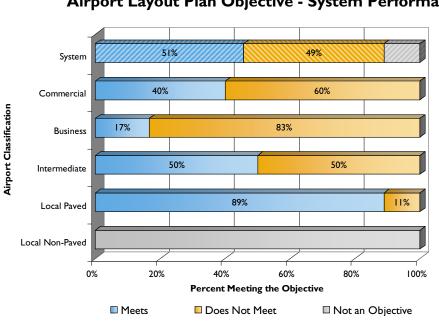
## 5.2 Airport Layout Plan

An ALP shows the existing and planned facilities at an airport; these facilities include runways, taxiways, terminal areas and building areas. Also depicted on an ALP are the existing and planned approaches to each runway, the FAA Part 77 Surfaces and any associated obstructions, existing and planned airport property ownership, and surrounding land uses. It is important that an ALP be current and shows the existing and planned facilities, airspace obstructions, property ownership, and land use. **Table 5-6** shows the ALP objectives by classification of airport.

| Table 5-6 |     |        |      |     |         |
|-----------|-----|--------|------|-----|---------|
| Airp      | ort | Layout | Plan | Obj | jective |

| Classification              | Objective                                                       |
|-----------------------------|-----------------------------------------------------------------|
| Commercial Service Airports | Less than 5 years old and on record with Aeronautics            |
| Business Airports           | Less than 5 years old and on record with Aeronautics            |
| Intermediate Airports       | Less than 5 years old and on record with Aeronautics            |
| Local Paved Airports        | Less than 10 years old and on record with Aeronautics           |
| Local Non-Paved Airports    | Less than 10 years old and on record with Aeronautics Suggested |

In order for an airport to be eligible to receive state funding, Aeronautics must have on record an approved and current ALP.




#### 5.2.2 System Performance – Airport Layout Plan

**Table 5-7** lists airport not meeting the objective. Eleven of the airports not meeting the objective currently have an ALP update in progress. Fifty-one percent of the airports meet the ALP objective as shown in **Chart 5-1**.

| Airport                       | Existing                      | Plan Needed to Meet Objective |  |
|-------------------------------|-------------------------------|-------------------------------|--|
| Gillette                      | ALP Greater than 5 years old* | Update ALP                    |  |
| Jackson                       | ALP Greater than 5 years old* | Update ALP                    |  |
| Laramie                       | ALP Greater than 5 years old* | Update ALP                    |  |
| Riverton                      | ALP Greater than 5 years old* | Update ALP                    |  |
| Rock Springs                  | ALP Greater than 5 years old  | Update ALP                    |  |
| Worland                       | ALP Greater than 5 years old  | Update ALP                    |  |
| Afton                         | ALP Greater than 5 years old  | Update ALP                    |  |
| Douglas                       | ALP Greater than 5 years old  | Update ALP                    |  |
| Evanston                      | ALP Greater than 5 years old* | Update ALP                    |  |
| Pinedale                      | ALP Greater than 5 years old* | Update ALP                    |  |
| Saratoga                      | ALP Greater than 5 years old  | Update ALP                    |  |
| Guernsey                      | ALP Greater than 5 years old* | Update ALP                    |  |
| Lander                        | ALP Greater than 5 years old* | Update ALP                    |  |
| Powell                        | ALP Greater than 5 years old* | Update ALP                    |  |
| Rawlins                       | ALP Greater than 5 years old* | Update ALP                    |  |
| Torrington                    | ALP Greater than 5 years old  | Update ALP                    |  |
| Cokeville                     | None*                         | Update ALP                    |  |
| Note: *ALP Update in progress |                               |                               |  |

Table 5-7Airport Layout Plan Objective - Airports Not Meeting Objective







## 5.3 Airport Reference Codes

The ARCs set for each classification of airports are minimum objectives. The actual ARC for each airport should be determined at the master planning level and should be for the most demanding or "critical" aircraft using or forecast to use an airport. To design a facility to accommodate the demands of a critical aircraft, the activity of this aircraft should be approximately 500 annual operations. This activity can be either existing or future anticipated use. The minimum objectives for ARC by classification of airport are presented in the following sections.

## 5.3.1 Commercial Service Airports

Commercial Service Airports are intended to serve major populations, economic centers and areas of tourism providing a connection to national and global economies; they are designed to accommodate commercial air service and business general aviation activity consistent with user demand.

It was determined that in order to meet current and future demands, Commercial Service Airports should be designed to at least ARC C-II standards. Some Commercial Service Airports have a need for higher ARCs which should be accommodated and planned for in the Airport Master Plan. ARC C-II allows the Commercial Service Airports to accommodate the existing air carrier aircraft currently serving Wyoming and should be adequate to accommodate future changes in the airline fleet.

ARC C-II accommodates aircraft with approach speeds of 121 knots or more but less than 141 knots and wingspans of 49 feet up to but not including 79 feet. A few examples of aircraft types included in this ARC include the popular business sized jets including the Lear Jets 35 and 60, Falcon 50 and Gulfstreams 100, 150, and 200. The commercial service aircraft currently serving the State of Wyoming and their associated ARCs are shown in **Table 5-8**.

| Aircraft Identifier                                                       | Description      | Aircraft Reference Code (ARC) |
|---------------------------------------------------------------------------|------------------|-------------------------------|
| BE1                                                                       | Beech 1900D      | B-II                          |
| CRJ                                                                       | CRJ 200          | C-II                          |
| CRJ7 <sup>1</sup>                                                         | CRJ 700          | C-II                          |
| DH2                                                                       | Dash 8-200       | B-II                          |
| EM2                                                                       | Embraer Brasilia | B-II                          |
| B757 <sup>1</sup>                                                         | Boeing 757       | C-IV                          |
| A319 <sup>1</sup>                                                         | Airbus 319       | C-III                         |
| Note: <sup>1</sup> Used only at Jackson Hole Airport for seasonal service |                  |                               |

Table 5-82008 Commercial Service Aircraft Operating in Wyoming

Source: Official Airline Guide, Boeing (www.boeing.com), Jane's All the World's Aircraft (2004-2005)



#### 5.3.2 Business Airports

Business Airports are intended to serve multi-county areas and economic centers providing a connection to state and national economies; they are intended to accommodate larger business jet activity and support tourism and recreational demand.

To meet current and future demands of a Business Airport and to aid in support of a multicounty economy, ARC C-II design standards should also be the minimum design standards applied to this classification of airport. This standard allows Business Airports to accommodate the popular business sized jet aircraft listed in **Table 3-5**. As with the Commercial Service Airports, some Business Airports may have a need for increased ARCs which should be accommodated and planned for locally through the airport master planning process.

### 5.3.3 Intermediate Airports

Intermediate Airports are intended to serve counties and medium to small communities to support local economies and accommodate medium to small business jet activity and recreational users.

To meet this intended use, an ARC of B-II has been assigned to Intermediate Airports. This design standard accommodates smaller business jets such as Cessna Citation 500 series and turbo-props such as the Beech King Air Series which are commonly seen at these airports.

## 5.3.4 Local Airports

Local Airports are intended to serve small communities and have the basic facilities to accommodate business, training, and recreational users and support emergency use.

A minimum design standard of ARC B-II has been established for Local Paved Airports. For Local Non-Paved Airports, an ARC of A-II has been established as the objective. ARC A-II aircraft are generally characterized by small single or twin engine, piston aircraft.

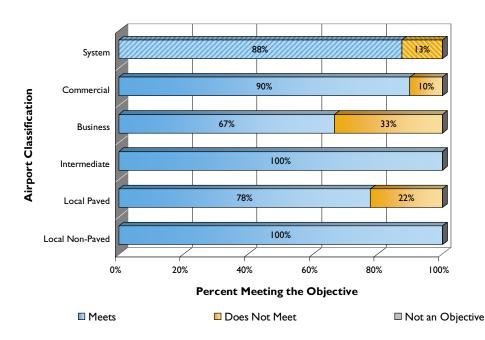
### 5.3.4.1 System Performance – ARC

Table 5-9 summarizes the ARC objective for each airport classification.

#### Table 5-9 ARC Objective

| Classification              | ARC Objective |
|-----------------------------|---------------|
| Commercial Service Airports | C-II          |
| Business Airports           | C-II          |
| Intermediate Airports       | B-II          |
| Local Paved Airports        | B-II          |
| Local Non-Paved Airports    | A-II          |




Only five airports in the Wyoming Aviation System do not meet the minimum ARC objective and are shown in **Table 5-10**. Eighty-eight percent of the airports in Wyoming meet the ARC objective as shown in **Chart 5-2**.

| Airport     | Existing ARC | ARC Objective |
|-------------|--------------|---------------|
| Worland     | B-II         | C-II          |
| Douglas     | B-II         | C-II          |
| Evanston    | B-II         | C-II          |
| Cokeville   | B-I          | B-II          |
| Thermopolis | B-I          | B-II          |

 Table 5-10

 ARC Objective - Airports Not Meeting Objective

Chart 5-2 ARC Objective - System Performance



## 5.4 Primary Runway Approach Lighting Systems

There are several approach lighting systems used to augment the selected instrument approach. These systems provide visual guidance to the approaching pilot to aid in runway alignment and lead-in guidance as well as roll guidance. These systems typically include a MALS, a MALSR, and ODALS.

The MALS consists of an array of lead-in lights extending outward from the threshold of the runway in the direction of the approaching aircraft and on the extended runway centerline. The MALS function to provide lead-in visual guidance to the approaching pilot as well as some degree of roll guidance. This system is typically installed in conjunction with non-precision instrument approaches.



The MALSR is similar to the MALS in that it also provides lead-in visual guidance but this system has additional sequenced flashing lights to provide a greater degree of roll guidance. The MALSR is typically installed in conjunction with a precision instrument approach.

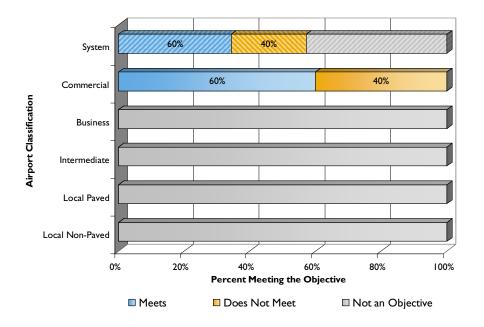
The ODALS system also extends outward from the runway threshold in the approach and on the runway centerline and provides visual guidance for non-precision instrument runways. The ODALS system is used for straight-in and circling approaches and does not provide roll guidance. Although the ODALS system is an approved and safe technology, it is no longer manufactured.

**Table 5-11** shows the primary runway approach lighting system objective for each classification.

| Classification              | Objective        |
|-----------------------------|------------------|
| Commercial Service Airports | MALSR            |
| Business Airports           | MALSR Suggested  |
| Intermediate Airports       | Not an Objective |
| Local Paved Airports        | Not an Objective |
| Local Non-Paved Airports    | Not an Objective |

Table 5-1 IPrimary Runway Approach Lighting System Objective

### 5.4.1 System Performance – Primary Runway Approach Lighting Systems


Airports not meeting the objective are shown in **Table 5-12**. The primary runway approach lighting system is an objective for only the Commercial Service Airports. As shown in **Chart 5-3**, 60% of these airports meet the approach lighting objective.

| Table 5-12                                                     |
|----------------------------------------------------------------|
| Primary Runway Approach Lighting System - Airports Not Meeting |
| Objective                                                      |

| Airport | Existing Approach Lighting | Approach Lighting Objective |
|---------|----------------------------|-----------------------------|
| Cody    | NONE                       | MALSR                       |
| Jackson | MALS                       | MALSR                       |
| Laramie | NONE                       | MALSR                       |
| Worland | NONE                       | MALSR                       |



Chart 5-3 Primary Runway Approach Lighting System Objective - System Performance



## 5.5 Primary Runway Instrument Approach Type

Inclement weather can have an impact on the usability of any aviation facility. Providing instrument approaches at an airport supplies pilots with a tool allowing for greater ability to land and takeoff during these times. Pilots either operate under Visual Flight Rules (VFR) or Instrument Flight Rules (IFR).

There are three main types of approaches to an airport and they include: visual, non-precision and precision approaches. Visual approaches are completed under the visual guidance of the pilot whereas non-precision instrument approach provides course guidance to the facility, and a precision instrument approaches provides both course and vertical guidance. For precision and non-precision approaches, varying combinations of approach lighting systems, runway edge lighting and other airport facilities can lower the visibility minimums of a given approach. **Table 5-13** lists the objectives by classification for approach type.

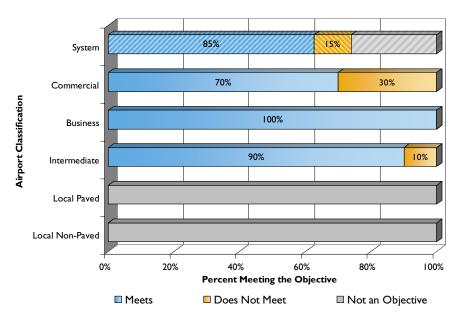
Table 5-13Primary Runway Instrument Approach Type Objective

| Classification              | Approach Objective |
|-----------------------------|--------------------|
| Commercial Service Airports | Precision          |
| Business Airports           | Non-Precision      |
| Intermediate Airports       | Non-Precision      |
| Local Airports              | Not an Objective   |
| Local Non-Paved Airports    | Not an Objective   |



## 5.5.1 System Performance – Primary Runway Instrument Approach Type

Four airports (three Commercial and one Intermediate) do not meet the primary runway instrument approach type objective. These airports are shown in **Table 5-14**. Eighty-five percent of the airports in the system meet the primary instrument approach type objective as shown in **Chart 5-4**.


# Table 5-14Primary Runway Instrument Approach Type Objective - Airports NotMeeting Objective

| Airport   | Existing Approach | Approach Objective |
|-----------|-------------------|--------------------|
| Cody      | Non-precision     | Precision          |
| Laramie*  | Non-precision     | Precision          |
| Worland** | Non-precision     | Precision          |
| Lander    | Visual            | Non-Precision      |
|           |                   | •                  |

Note: \*Laramie has a precision approach to the secondary runway.

\*\*Does not meet FAA runway/taxiway separation standards for a precision approach with visibility minimums lower than <sup>3</sup>/<sub>4</sub> statute miles







## 5.6 Paved Auto Parking

Paved auto parking is essential at Commercial Service and Business Airports; it is suggested at Intermediate and Local Airports. Paved auto parking areas help to reduce dust and the potential for foreign object debris (FOD) from being transferred onto airport aprons, hangar areas and other surfaces by vehicle traffic providing for a safer airport environment. Paved auto parking also provides more accessible access to airport facilities, helping to provide accessible transportation options to the Wyoming population.

The objectives for paved auto parking are shown in Table 5-15.

| Table 5-15                   |  |  |
|------------------------------|--|--|
| Paved Auto Parking Objective |  |  |

| Classification              | Objective        |
|-----------------------------|------------------|
| Commercial Service Airports | Essential        |
| Business Airports           | Essential        |
| Intermediate Airports       | Suggested        |
| Local Paved Airports        | Suggested        |
| Local Non-Paved Airports    | Not an Objective |

## 5.6.1 System Performance – Paved Auto Parking

The one airport not meeting this objective is shown in **Table 5-16**. Ninety-four percent of airports in the system meet the paved auto parking objective. System performance of the objective is shown in **Chart 5-5**.

# Table 5-16Paved Auto Parking Objective - Airports Not Meeting Objective

| Airport  | Existing Paved Auto Parking | Paved Auto Parking Needed to<br>Meet Objective |
|----------|-----------------------------|------------------------------------------------|
| Greybull | Unpaved                     | Essential                                      |



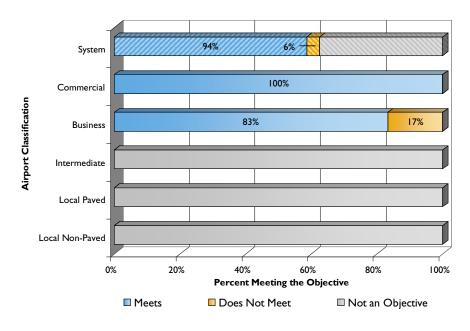



Chart 5-5 Paved Auto Parking Objective - System Performance

## 5.7 Deicing

A deicing system is generally operated by the airport, an airline or an FBO. Deicing systems aid in allowing aircraft to fly during inclement weather conditions providing more reliable transportation options. Ice accumulation on an aircraft's wings and other surfaces is a safety hazard. Deicing facilities can also aid in attracting transient airport users, especially those traveling for business purposes.

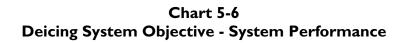
Deicing containment systems are important in order to capture deicing fluid, a glycol substance, and prevent it from entering the ground and nearby water sources. Glycol runoff is harmful to nature as it uses oxygen while it breaks down.

The deicing objective for each classification is shown in Table 5-17.

| Classification              | Objective                      |
|-----------------------------|--------------------------------|
| Commercial Service Airports | Deicing System                 |
|                             | Containment System             |
| Business Airports           | Deicing System                 |
|                             | Containment System – Suggested |
| Intermediate Airports       | Not an Objective               |
| Local Paved Airports        | Not an Objective               |
| Local Non-Paved Airports    | Not an Objective               |

 Table 5-17

 Deicing & Deicing Containment System Objectives





### 5.7.1 System Performance – Deicing

Eighty-one percent of airports in the system meet both of the deicing system objectives. While all but one Commercial Service Airport have aircraft deicing, many do not have a deicing containment system. Two of the Business Airports do not have a deicing system. **Table 5-18** shows the airports which do not meet the deicing system objective for their respective classification. System performance of this objective is shown in **Charts 5-6** and **5-7**.

| Existing Facility                          | Facilities Needed to Meet Objective                                                                                                                                                                                                                                              |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No Containment System for Aircraft Deicing | Aircraft Deicing with Containment System                                                                                                                                                                                                                                         |
| No Containment System for Aircraft Deicing | Aircraft Deicing with Containment System                                                                                                                                                                                                                                         |
| No Containment System for Aircraft Deicing | Aircraft Deicing with Containment System                                                                                                                                                                                                                                         |
| No Containment System for Aircraft Deicing | Aircraft Deicing with Containment System                                                                                                                                                                                                                                         |
| No Containment System for Aircraft Deicing | Aircraft Deicing with Containment System                                                                                                                                                                                                                                         |
| No Aircraft Deicing                        | Aircraft Deicing with Containment System                                                                                                                                                                                                                                         |
| Douglas No Aircraft Deicing                | Aircraft Deicing                                                                                                                                                                                                                                                                 |
|                                            | Containment System Suggested                                                                                                                                                                                                                                                     |
| Greybull No Aircraft Deicing               | Aircraft Deicing                                                                                                                                                                                                                                                                 |
|                                            | Containment System Suggested                                                                                                                                                                                                                                                     |
|                                            | No Containment System for Aircraft Deicing<br>No Aircraft Deicing<br>No Aircraft Deicing |

| Table 5-18                                                |  |
|-----------------------------------------------------------|--|
| <b>Deicing Objective - Airports Not Meeting Objective</b> |  |







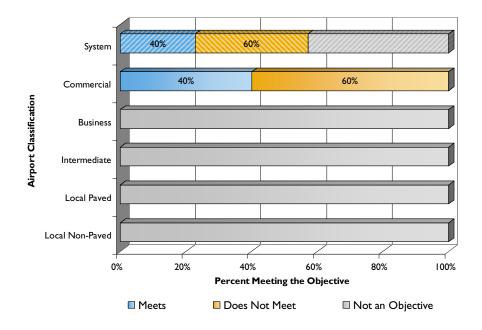



Chart 5-7 Deicing Containment Objective- System Performance

## 5.8 Perimeter Fencing

For security and wildlife protection of the airport facility, each airport in the Wyoming Aviation System should have perimeter fencing. This is especially critical at the Commercial Service, Business and Intermediate Airports. Perimeter fencing can be described as *Security*, *Wildlife* or *Field Fence*.

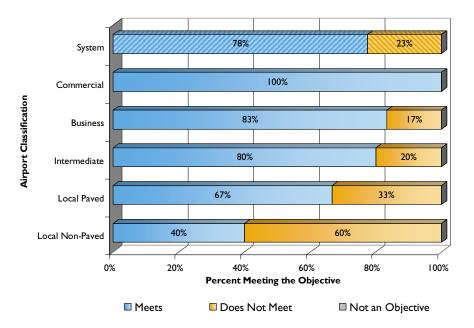
Security Fencing is nine-foot-high chain-link fencing. This is typically installed at Commercial Service Airports. Wildlife Fencing is six to eight foot high woven fence designed to keep wildlife out of the airport environment. Field Fence is four-strand barbed wire fence functioning to physically delineate the airport property.

The perimeter fencing objectives are shown in Table 5-19.

| Termeter Teneing Objective  |                            |
|-----------------------------|----------------------------|
| Classification              | Objective                  |
| Commercial Service Airports | Security or Wildlife Fence |
| Business Airports           | Wildlife Fence             |
| Intermediate Airports       | Wildlife Fence             |
| Local Paved Airports        | Wildlife Fence             |
| Local Non-Paved Airports    | Field Fence                |

Table 5-19 Perimeter Fencing Objective




#### 5.8.1 System Performance – Perimeter Fencing

Airports not meeting the perimeter fencing objectives are shown in **Table 5-20**. Seventy-eight percent of the airports meet the perimeter fencing objective as shown in **Chart 5-8**.

| Airport                  | Existing Fencing               | Perimeter Fencing Needed<br>to Meet Objective |
|--------------------------|--------------------------------|-----------------------------------------------|
| Afton                    | Field Fence                    | Wildlife Fence                                |
| Guernsey                 | Security Fence – Not Perimeter | Wildlife Fence                                |
| Wheatland                | Field Fence                    | Wildlife Fence                                |
| Cokeville                | Field Fence                    | Wildlife Fence                                |
| Cowlely                  | Field Fence                    | Wildlife Fence                                |
| Glendo (non-paved)       | No Fence                       | Wildlife Fence                                |
| Green River (non-paved)  | Field Fence – Not Perimeter    | Field Fence                                   |
| Medicine Bow (non-paved) | No Fence                       | Field Fence                                   |
| Pine Bluffs              | Field Fence                    | Wildlife Fence                                |

Table 5-20Perimeter Fencing Objective - Airports Not Meeting Objective

Chart 5-8 Perimeter Fencing Objective - System Performance





# 5.9 Fixed Based Operator

An FBO is an aviation business located at an airport. An FBO can serve in many different capacities and offer many different combinations of services. Typically, an FBO offers some combination of flight instruction and flight ground school, fuel services, pilot flight planning facilities, lounge, restrooms, phone, food, conference centers, aircraft rental and sales, aircraft maintenance and inspection, charter operations, deicing services, etc. The availability of these services to the flying community aids in attracting pilots to the airport thereby adding to the economic viability of the airport. These amenities not only aid in attracting transient pilots but are generally seen as attractants for pilots and business when selecting which airport to frequent or base their aircraft.

Local influence is a key component to attracting and retaining an FBO. Therefore, this service objective is "suggested" at each airport in the system, with the exception of Local Non-Paved, as its success requires that an FBO is available to operate at the airport and that local conditions (lease agreements, facilities, adequate client base) are sufficient for an FBO to be successful.

If an FBO is not present on an airport, the sponsor may offer basic services such as a small terminal building, restrooms, phone, fuel and ground transportation.

# 5.10 Food Choices

It is desired that Commercial Service, Business and Intermediate Airports have food choices available to airport users. For Commercial Service Airports it is suggested that each airport have a restaurant. A restaurant is important for both business and leisure travelers using commercial service for air travel. Restaurants also serve as a destination or point of interest drawing users to the airport. At Business and Intermediate Airports, it is suggested that each airport have vending services available to airport users. These services typically include beverages and small snacks. Food is not an objective for all Local Airports. The food objectives are shown in **Table 5-21**.

|                             | •                          |
|-----------------------------|----------------------------|
| Classification              | Food Objective             |
| Commercial Service Airports | Restaurant Suggested       |
| Business Airports           | Vending Machines Suggested |
| Intermediate Airports       | Vending Machines Suggested |
| Local Paved Airports        | Not an Objective           |
| Local Non-Paved Airports    | Not an Objective           |

Table 5-21 Food Objective

## 5.10.1 System Performance – Food Objective

Since it is suggested and not essential that Commercial Service, Business and Intermediate Airports have food available for airport users, this objective is not analyzed in the system performance.



# 5.11 Fuel

It is essential that Commercial Service and Business Airports offer both Jet A and 100LL fuel to airport users. Jet A fuel is important to these two classifications of airports because commercial aircraft and a large majority of the business aircraft frequently using these airports require Jet A fuel. Smaller general aviation aircraft often use 100LL fuel. Fuel services and facilities at an airport, especially when owned by the airport sponsor, add to the economic viability of an airport.

The fuel objective for each classification is presented in Table 5-22.

Table 5-22 Fuel Objective

| Classification              | Objective        |  |
|-----------------------------|------------------|--|
| Commercial Service Airports | Jet A & 100LL    |  |
| Business Airports           | Jet A & 100LL    |  |
| Intermediate Airports       | 100LL            |  |
| Local Paved Airports        | Fuel Suggested   |  |
| Local Non-Paved Airports    | Not an Objective |  |

## 5.11.1 System Performance – Fuel

Only one airport, an Intermediate Airport, does not meet the objective and is shown in **Table 5-23**. Ninety-six percent of the airports meet the fuel objective. System performance of this objective is shown in **Chart 5-9**.

Table 5-23Fuel Objective - Airports Not Meeting Objective

| Airport   | Existing Fueling | Fuel Needed to Meet Objective |
|-----------|------------------|-------------------------------|
| Wheatland | None             | 100LL                         |



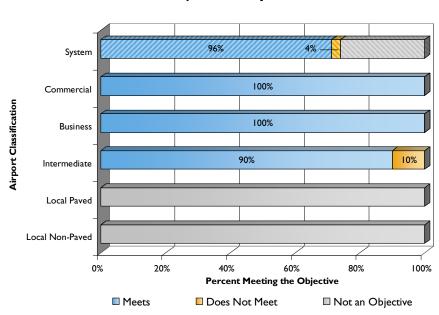



Chart 5-9 Fuel Objective - System Performance

# 5.12 Ground Transportation

Adequate ground transportation is necessary to connect the flying community with the city or region the airport serves. Adequate ground transportation can be accomplished with on-airport car rental facilities, an airport courtesy car or a combination thereof.

Ground transportation objectives are presented in Table 5-24.

Table 5-24Ground Transportation Objective

| Classification              | Objective                        |
|-----------------------------|----------------------------------|
| Commercial Service Airports | On-Airport Car Rental Facilities |
| Business Airports           | Courtesy Car                     |
| Intermediate Airports       | Courtesy Car                     |
| Local Paved Airports        | Suggested                        |
| Local Non-Paved Airports    | Not an Objective                 |

## 5.12.1 System Performance – Ground Transportation

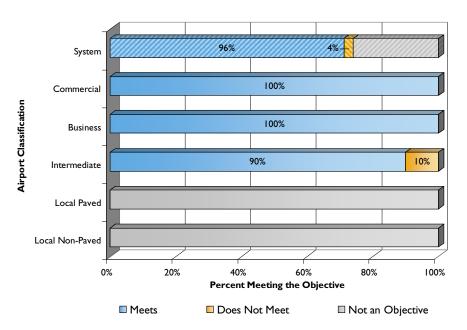

Ninety-six percent of airports meet the ground transportation objective. One Intermediate Airport had no ground transportation available to airport users and does not meet the objective. The one airport not meeting the objective is listed in **Table 5-25** and system performance of the objective is shown in **Chart 5-10**.



Table 5-25Ground Transportation Objective - Airports Not Meeting Objective

| Airport   | Existing Ground Transportation | Ground Transportation Needed<br>to Meet Objective |
|-----------|--------------------------------|---------------------------------------------------|
| Wheatland | None                           | Courtesy Car                                      |

Chart 5-10 Ground Transportation Objective - System Performance

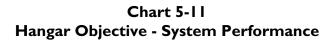


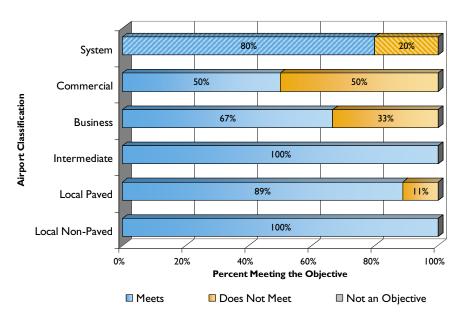
# 5.13 Hangars

Hangars provide shelter for aircraft. Many Wyoming aircraft owners desire to hangar their aircraft due to the severe winter weather experienced in the region. Hangars are also desirable for transient pilots who prefer to hangar their aircraft during overnight stays. Having hangars available aids in attracting transient pilots and corporate travelers and are generally seen as attractants for pilots and business when selecting which airport to frequent or base their aircraft. **Table 5-26** describes the hangar objectives by airport classification.

Table 5-26 Hangar Objective

| Classification              | Objective              |  |
|-----------------------------|------------------------|--|
| Commercial Service Airports | 100% of Based Aircraft |  |
| Business Airports           | 100% of Based Aircraft |  |
| Intermediate Airports       | 75% of Based Aircraft  |  |
| Local Paved Airports        | 50% of Based Aircraft  |  |
| Local Non-Paved Airports    | 50% of Based Aircraft  |  |





#### 5.13.1 System Performance - Hangar

Individual airports not meeting the objective are listed in **Table 5-27**. Eighty percent of airports meet the hangar objective as shown in **Chart 5-11**.

| Airport       | Existing Based Aircraft<br>in Hangars | Percent of Based Aircraft in<br>Hangars Needed to Meet Objective |
|---------------|---------------------------------------|------------------------------------------------------------------|
| Cheyenne      | 50% of Based Aircraft in Hangars      | 100% of Based Aircraft in Hangars                                |
| Cody          | 75% of Based Aircraft in Hangars      | 100% of Based Aircraft in Hangars                                |
| Riverton      | 75% of Based Aircraft in Hangars      | 100% of Based Aircraft in Hangars                                |
| Rocks Springs | 75% of Based Aircraft in Hangars      | 100% of Based Aircraft in Hangars                                |
| Sheridan      | 75% of Based Aircraft in Hangars      | 100% of Based Aircraft in Hangars                                |
| Greybull      | 75% of Based Aircraft in Hangars      | 100% of Based Aircraft in Hangars                                |
| Pinedale      | 75% of Based Aircraft in Hangars      | 100% of Based Aircraft in Hangars                                |
| Lusk          | Unknown                               | 50% of Based Aircraft in Hangars                                 |

Table 5-27Hangar Objective - Airports Not Meeting Objective





# 5.14 Lighted Hangar Area

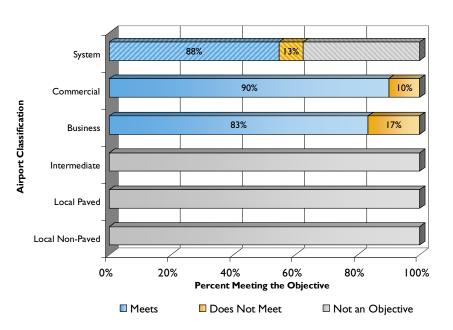
It is important to have safe and secure airports for airport users and the general public. Lighted hangar areas help to provide this safe and secure environment. In addition, lighted hangar areas can also result in lower insurance premiums for based aircraft and hangar owners. Lighted hangar areas can be achieved through exterior lights above hangar doors or through light posts installed throughout a hangar area. It is essential that Commercial Service and Business Airports have lighted hangar areas. It is suggested that Intermediate Airports have lighted hangar areas. A lighted hangar area is not an objective for Local Airports.



The lighted hangar area objective by classification is presented in Table 5-28.

Table 5-28Lighted Hangar Area Objective

| Classification              | Objective           |  |
|-----------------------------|---------------------|--|
| Commercial Service Airports | Lighted Hangar Area |  |
| Business Airports           | Lighted Hangar Area |  |
| Intermediate Airports       | Suggested           |  |
| Local Paved Airports        | Not an Objective    |  |
| Local Non-Paved Airports    | Not an Objective    |  |


#### 5.14.1 System Performance – Lighted Hangar Area

Two airports (one Commercial Service and one Business) do not meet the objective and are listed in **Table 5-29**. Eighty-eight percent of airports meet the lighted hangar area objective. **Chart 5-12** portrays the system performance of this objective.

Table 5-29Lighted Hangar Area Objective - Airports Not Meeting Objective

| Airport  | Existing Lighting | Facility Needed to Meet Objective |
|----------|-------------------|-----------------------------------|
| Cheyenne | No Lighting       | Add Lighting                      |
| Saratoga | No Lighting       | Add Lighting                      |







# 5.15 Land Use Protection Plan

A Land Use Protection Plan is a local ordinance controlling the height of structures and objects of natural growth and otherwise regulating the use of the property within the vicinity of the airport through the removal and control of such hazards. Airport hazards endanger the lives and property of users and property or occupants of the land in the airport vicinity. In addition, the hazard can reduce the size of the area available for the landing, takeoff, and maneuvering of aircraft, thus tending to destroy or impair the utility of the airport and the public investment.

It is essential that all airports in the system with paved runways have a Land Use Protection Plan on record with Aeronautics as shown in **Table 5-30**.

| Classification                               | Objective                  |
|----------------------------------------------|----------------------------|
| Commercial Service Airports                  | On record with Aeronautics |
| Business Airports On record with Aeronautics |                            |
| Intermediate Airports                        | On record with Aeronautics |
| Local Paved Airports                         | On record with Aeronautics |
| Local Non-Paved Airports                     | Not an Objective           |

Table 5-30Land Use Protection Plan Objective



#### 5.15.1 System Performance – Land Use Protection Plan

Airports not meeting the objective are listed in **Table 5-31**. Forty percent of the airports meet the Land Use Protection Plan objective as shown in **Chart 5-13**.

| Airport      | Existing | Plan Needed to Meet Objective           |
|--------------|----------|-----------------------------------------|
| Casper       | None     | Complete Plan and File with Aeronautics |
| Jackson      | None     | Complete Plan and File with Aeronautics |
| Laramie      | None     | Complete Plan and File with Aeronautics |
| Worland      | None     | Complete Plan and File with Aeronautics |
| Greybull     | None     | Complete Plan and File with Aeronautics |
| Pinedale     | None     | Complete Plan and File with Aeronautics |
| Saratoga     | None     | Complete Plan and File with Aeronautics |
| Big Piney    | None     | Complete Plan and File with Aeronautics |
| Buffalo      | None     | Complete Plan and File with Aeronautics |
| Guernsey     | None     | Complete Plan and File with Aeronautics |
| Lander       | None     | Complete Plan and File with Aeronautics |
| Newcastle    | None     | Complete Plan and File with Aeronautics |
| Powell       | None     | Complete Plan and File with Aeronautics |
| Rawlins      | None     | Complete Plan and File with Aeronautics |
| Torrington   | None     | Complete Plan and File with Aeronautics |
| Wheatland    | None     | Complete Plan and File with Aeronautics |
| Cowley       | None     | Complete Plan and File with Aeronautics |
| Dixon        | None     | Complete Plan and File with Aeronautics |
| Fort Bridger | None     | Complete Plan and File with Aeronautics |
| Lusk         | None     | Complete Plan and File with Aeronautics |
| Thermopolis  | None     | Complete Plan and File with Aeronautics |

Table 5-3 ILand Use Protection Plan Objective - Airports Not Meeting Objective



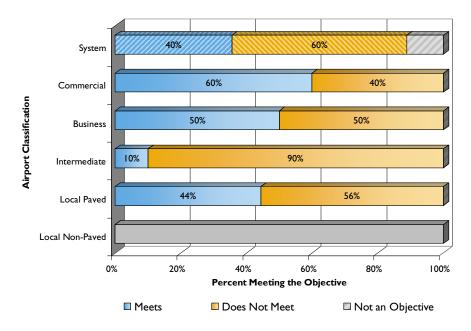



Chart 5-13 Land Use Protection Plan Objective - System Performance

# 5.16 Legislative Liaison

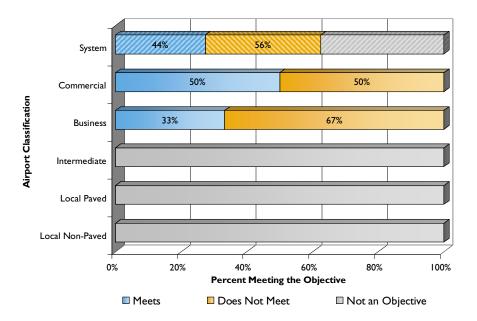
A legislative liaison is someone who monitors legislative proceedings and lobbies on behalf of the airport and the airport issues impacting all airports in the Wyoming system. In many cases, the airport manager is designated the legislative liaison while at other airports the sponsor may designate another individual. It is important to designate an individual as an airport's legislative liaison in order to have someone who can contact legislators when legislation or actions which impact airports and aviation are under consideration. It is also important that the legislative liaison for each airport is on record with Aeronautics.

The legislative liaison objectives by classification are shown in Table 5-32.

Table 5-32Legislative Liaison Objective

| Classification              | Objective           |
|-----------------------------|---------------------|
| Commercial Service Airports | Legislative Liaison |
| Business Airports           | Legislative Liaison |
| Intermediate Airports       | Suggested           |
| Local Paved Airports        | Suggested           |
| Local Non-Paved Airports    | Not an Objective    |




#### 5.16.1 System Performance – Legislative Liaison

**Table 5-33** shows the airports not meeting this objective. As shown in **Chart 5-14**, 44% of airports meet the legislative liaison objective.

| Airport      | Existing               | Designation Needed to Meet Objective |
|--------------|------------------------|--------------------------------------|
| Cody         | No Legislative Liaison | Designate a Legislative Liaison      |
| Riverton     | No Legislative Liaison | Designate a Legislative Liaison      |
| Rock Springs | No Legislative Liaison | Designate a Legislative Liaison      |
| Sheridan     | No Legislative Liaison | Designate a Legislative Liaison      |
| Worland      | No Legislative Liaison | Designate a Legislative Liaison      |
| Afton        | No Legislative Liaison | Designate a Legislative Liaison      |
| Evanston     | No Legislative Liaison | Designate a Legislative Liaison      |
| Greybull     | No Legislative Liaison | Designate a Legislative Liaison      |
| Saratoga     | No Legislative Liaison | Designate a Legislative Liaison      |

Table 5-33Legislative Liaison Objective - Airports Not Meeting Objective

Chart 5-14 Legislative Liaison - System Performance





# 5.17 Aircraft Maintenance

Aircraft Maintenance is most often offered by FBOs located on the airport who perform major or minor airframe and/or powerplant services. The availability of this service to the flying community aids in attracting pilots to the airport thereby adding to the economic viability of the airport.

The aircraft maintenance objective for each classification is shown in Table 5-34.

|                             | •                           |
|-----------------------------|-----------------------------|
| Classification              | Objective                   |
| Commercial Service Airports | Major Airframe & Powerplant |
| Business Airports           | Major Airframe & Powerplant |
| Intermediate Airports       | Minor Airframe & Powerplant |
| Local Paved Airports        | Not an Objective            |
| Local Non-Paved Airports    | Not an Objective            |

# Table 5-34Aircraft Maintenance Objective

#### 5.17.1 System Performance – Aircraft Maintenance

The airports not meeting the objective are shown in **Table 5-35**. Sixty-five percent of airports meet the aircraft maintenance objective as shown in **Chart 5-15**.

# Table 5-35Aircraft Maintenance Objective - Airports Not Meeting Objective

| Airport      | Existing                    | Service Needed to Meet Objective |
|--------------|-----------------------------|----------------------------------|
| Laramie      | Minor Airframe              | Major Airframe & Powerplant      |
| Rock Springs | None                        | Major Airframe & Powerplant      |
| Evanston     | Minor Airframe & Powerplant | Major Airframe & Powerplant      |
| Saratoga     | Minor Airframe & Powerplant | Major Airframe & Powerplant      |
| Big Piney    | None                        | Minor Airframe & Powerplant      |
| Guernsey     | None                        | Minor Airframe & Powerplant      |
| Kemmerer     | None                        | Minor Airframe & Powerplant      |
| Newcastle    | None                        | Minor Airframe & Powerplant      |
| Wheatland    | None                        | Minor Airframe & Powerplant      |



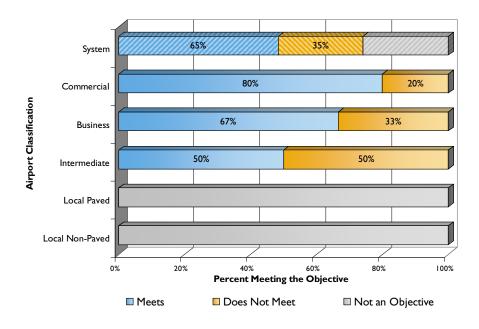



Chart 5-15 Aircraft Maintenance Objective - System Performance

# 5.18 Airport Manager

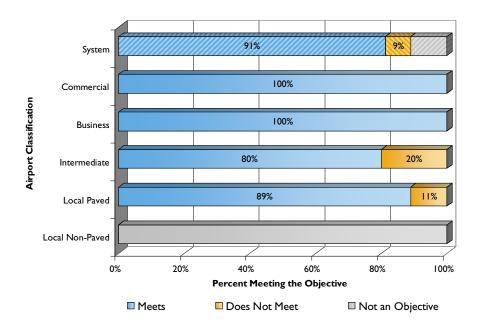
It is essential that all Commercial Service, Business, Intermediate and Local Paved Airports have an airport manager, or someone designated by the sponsor to conduct airport manager duties. Generally, an airport manager oversees daily operation of the airport, acts as a liaison with city officials, oversees airport development projects, manages relations with airport users, promotes the airport, and is the sponsor representative to the FAA and Aeronautics.

The objectives for airport manager by classification are shown in Table 5-36.

|         | Table 5-36        |
|---------|-------------------|
| Airport | Manager Objective |

| Classification              | Objective       |
|-----------------------------|-----------------|
| Commercial Service Airports | Airport Manager |
| Business Airports           | Airport Manager |
| Intermediate Airports       | Airport Manager |
| Local Paved Airports        | Airport Manager |
| Local Non-Paved Airports    | Suggested       |




#### 5.18.1 System Performance – Airport Manager

**Table 5-37** lists the airports not meeting the airport manager objective. As shown in **Chart 5-16**, all Commercial Service and Business Airports in the system meet the airport manager objective. Two Intermediate and one Local Airports do not meet the objective.

Table 5-37Airport Manager Objective - Airports Not Meeting Objective

| Airport   | Existing           | Designation Needed to Meet Objective |
|-----------|--------------------|--------------------------------------|
| Guernsey  | No Airport Manager | Designate an Airport Manager         |
| Wheatland | No Airport Manager | Designate an Airport Manager         |
| Dixon     | No Airport Manager | Designate an Airport Manager         |

Chart 5-16 Airport Manager Objective - System Performance





# 5.19 Airport Master Plan

Airport Master Plans are important tools for evaluating the existing facilities at an airport, forecasting future demand, evaluating existing facilities against demand, planning for future upgrades to the facility, studying project alternatives, estimating future investments and a general analysis of potential environmental impacts. Master Plans are the most accurate forecast of airport demand and facility needs and serve as a valuable tool in developing an airport's Capital Improvement Plan (CIP).

The Airport Master Plan objective for each classification is shown in Table 5-38.

| Classification              | Objective                                                       |
|-----------------------------|-----------------------------------------------------------------|
| Commercial Service Airports | Less than 10 years old and on record with Aeronautics           |
| Business Airports           | Less than 10 years old and on record with Aeronautics           |
| Intermediate Airports       | Less than 10 years old and on record with Aeronautics           |
| Local Paved Airports        | Less than 15 years old and on record with Aeronautics Suggested |
| Local Non-Paved Airports    | Less than 15 years old and on record with Aeronautics Suggested |

Table 5-38Airport Master Plan Objective

## 5.19.1 System Performance – Airport Master Plan

Airports not meeting the Airport Master Plan objective are shown in **Table 5-39**. Fifty-four percent of the airports in the system meet the Airport Master Plan objective as shown in **Chart 5-17**. Six of the airports not meeting the objective currently have a Master Plan update in progress.

| Airport         | Existing                           | Plan Needed to Meet Objective        |
|-----------------|------------------------------------|--------------------------------------|
| Jackson         | MP Greater than 10 years old*      | Update MP                            |
| Laramie         | MP Greater than 10 years old*      | Update MP                            |
| Sheridan        | MP Greater than 10 years old       | Update MP                            |
| Afton           | MP Greater than 10 years old       | Update MP                            |
| Douglas         | MP Greater than 10 years old       | Update MP                            |
| Evanston        | MP Greater than 10 years old*      | Update MP                            |
| Pinedale        | MP Greater than 10 years old*      | Update MP                            |
| Saratoga        | MP Greater than 10 years old       | Update MP                            |
| Guernsey        | MP Not on record with Aeronautics* | Provide Aeronautics with approved MP |
| Lander          | MP Greater than 10 years old*      | Update MP                            |
| Torrington      | MP Greater than 10 years old       | Update MP                            |
| Wheatland       | MP Greater than 10 years old       | Update MP                            |
| Note: *MP updat | te in progress                     |                                      |

Table 5-39Airport Master Plan Objective - Airports Not Meeting Objective



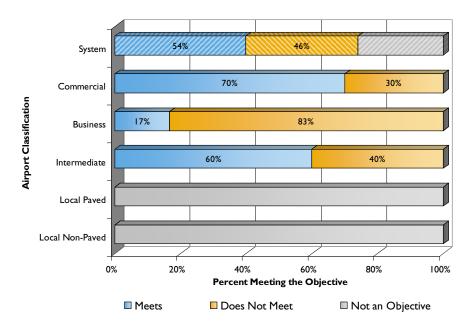



Chart 5-17 **Airport Master Plan Objective - System Performance** 

# 5.20 Minimum Standards

Minimum standards establish standards for commercial operators that must be met as a condition of the right to conduct aeronautical activity on an airport. According to FAA AC 150/5190A, minimum standards should relate primarily to the public interest and should be designed to protect airport users from irresponsible, unsafe or inadequate service. Proper standards also discourage unqualified commercial operators from operating at an airport. The right for an operator to offer services and goods to airport users can be conditioned on the operator's ability to meet the outlined standards.

Table 5-40 shows the Minimum Standards objectives for each classification.

| Minimum Standards Objective |                            |  |
|-----------------------------|----------------------------|--|
| Classification              | Objective                  |  |
| Commercial Service Airports | On record with Aeronautics |  |
| Business Airports           | On record with Aeronautics |  |
| Intermediate Airports       | On record with Aeronautics |  |
| Local Paved Airports        | Suggested                  |  |
| Local Non-Paved Airports    | Not an Objective           |  |





#### 5.20.1 System Performance – Minimum Standards

Individual airports not meeting the objective are shown in **Table 5-41**. Twelve percent of airports meet the minimum standards objective. System performance of this objective is shown in **Chart 5-18**.

| Airport      | Existing                     | Task Needed to Meet Objective              |
|--------------|------------------------------|--------------------------------------------|
| Casper       | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Cody         | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Gillette     | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Jackson      | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Riverton     | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Rock Springs | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Sheridan     | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Worland      | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Afton        | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Douglas      | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Evanston     | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Greybull     | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Pinedale     | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Saratoga     | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Big Piney    | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Buffalo      | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Guernsey     | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Kemmerer     | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Lander       | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Newcastle    | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Powell       | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Rawlins      | Not on File with Aeronautics | Create Standards and File with Aeronautics |
| Wheatland    | Not on File with Aeronautics | Create Standards and File with Aeronautics |

| Table 5-41                                                   |
|--------------------------------------------------------------|
| Minimum Standards Objective - Airports Not Meeting Objective |



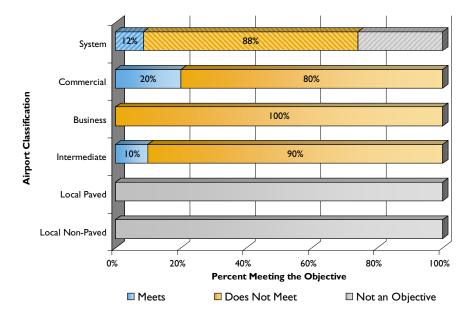



Chart 5-18 Minimum Standards Objective - System Performance

# 5.21 Noise Contour Map

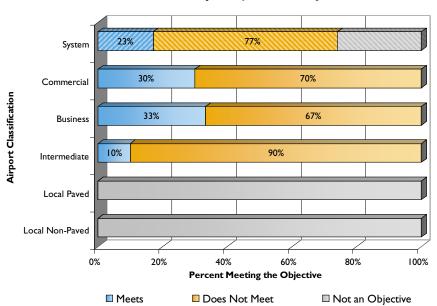
Noise contour maps depict the noise impacts of airport operations on both airport and surrounding property. These maps show the DNL (Day-Night average sound level) contours at an airport. DNL is the standard used by the FAA for measuring noise on and around an airport. It represents an average sound level over a 24-hour period of time with a penalty for noise which occurs between 10:00 pm and 7:00 am. Airports use noise contour maps to identify and evaluate areas that warrant noise control actions. Generally, the noise contour map is updated and included as part of an ALP update.

The objectives for noise contour maps are shown in Table 5-42.

| Classification              | Objective                                             |  |
|-----------------------------|-------------------------------------------------------|--|
| Commercial Service Airports | Less than 10 years old and on record with Aeronautics |  |
| Business Airports           | Less than 10 years old and on record with Aeronautics |  |
| Intermediate Airports       | Less than 10 years old and on record with Aeronautics |  |
| Local Paved Airports        | Suggested                                             |  |
| Local Non-Paved Airports    | Not an Objective                                      |  |

Table 5-42Noise Contour Map Objective

# 5.21.1 System Performance – Noise Contour Map


Individual airports not meeting the objective are shown in **Table 5-43**. Twenty-three percent of airports meet the Noise Contour Map objective as shown in **Chart 5-19**.



|              |                                                                   | <b>.</b>                             |  |
|--------------|-------------------------------------------------------------------|--------------------------------------|--|
| Airport      | Existing                                                          | Map Needed to Meet Objective         |  |
| Cheyenne     | Map greater than 10 years old                                     | Update Map                           |  |
| Cody         | Map greater than 10 years old and not<br>on file with Aeronautics | Update Map and File with Aeronautics |  |
| Gillette     | Noise map date unknown                                            | Update Map                           |  |
| Laramie      | Noise map date unknown                                            | Update Map                           |  |
| Rock Springs | No Noise Map                                                      | Create Map                           |  |
| Sheridan     | Noise map date unknown                                            | Update Map                           |  |
| Worland      | No Noise Map                                                      | Create Map                           |  |
| Evanston     | Map greater than 10 years old                                     | Update Map                           |  |
| Greybull     | No Noise Map                                                      | Create Map and File with Aeronautics |  |
| Pinedale     | No Noise Map                                                      | Create Map and File with Aeronautics |  |
| Saratoga     | Map greater than 10 years old                                     | Update Map                           |  |
| Buffalo      | No Noise Map                                                      | Create Map and File with Aeronautics |  |
| Guernsey     | No Noise Map                                                      | Create Map and File with Aeronautics |  |
| Kemmerer     | No Noise Map                                                      | Create Map and File with Aeronautics |  |
| Lander       | No Noise Map                                                      | Create Map and File with Aeronautics |  |
| Newcastle    | No Noise Map                                                      | Create Map and File with Aeronautics |  |
| Powell       | No Noise Map                                                      | Create Map and File with Aeronautics |  |
| Rawlins      | No Noise Map                                                      | Create Map and File with Aeronautics |  |
| Torrington   | Noise map date unknown                                            | Update Map                           |  |
| Wheatland    | No Noise Map                                                      | Create Map and File with Aeronautics |  |

Table 5-43Noise Contour Map Objective - Airports Not Meeting Objective

Chart 5-19 Noise Contour Map Objective - System Performance





# 5.22 Pavement Management Plan

A Pavement Management Plan is a joint effort between an airport, their consultant, the FAA, and Aeronautics. The plan is typically developed by Aeronautics and takes into account Pavement Condition Inspections (three year cycle), engineering judgment, historical information, and input from the FAA, the airport, and the airport's consultant. The Corp of Engineer's Paver program is utilized in developing the plan. A Pavement Management Plan is developed based on a 5-year projection for maintenance and a 10-year projection for rehabilitation and reconstruction. It is re-evaluated every three years after the PCI inspection. Once concurrence is obtained and the plan signed by the sponsor, each plan is incorporated into the Capital Improvement Program by the state and the FAA. It is essential that all Commercial Service, Business and Intermediate Airports have a Pavement Management Plan on record with Aeronautics while it is suggested for Local Airports.

Table 5-44 shows the Pavement Management Plan Objective for each classification.

| Classification              | Objective                  |  |
|-----------------------------|----------------------------|--|
| Commercial Service Airports | On record with Aeronautics |  |
| Business Airports           | On record with Aeronautics |  |
| Intermediate Airports       | On record with Aeronautics |  |
| Local Paved Airports        | On record with Aeronautics |  |
| Local Non-Paved Airports    | Not an Objective           |  |

Table 5-44Pavement Management Plan Objective

# 5.22.1 System Performance - Pavement Management Plan

As shown in **Table 5-45**, all but four airports in the system meet this objective by classification. System performance is shown graphically in **Chart 5-20**.

| Pavement Management Plan - Airports Not Meeting Objective |               |                                     |  |
|-----------------------------------------------------------|---------------|-------------------------------------|--|
| Airport Existing Plan Needed to Meet Object               |               | Plan Needed to Meet Objective       |  |
| Jackson                                                   | Not on record | Sign and return plan to Aeronautics |  |
| Guernsey                                                  | Not on record | Sign and return plan to Aeronautics |  |
| Wheatland                                                 | Not on record | Sign and return plan to Aeronautics |  |
| Hulett                                                    | Not on record | Sign and return plan to Aeronautics |  |

 Table 5-45

 Pavement Management Plan - Airports Not Meeting Objective



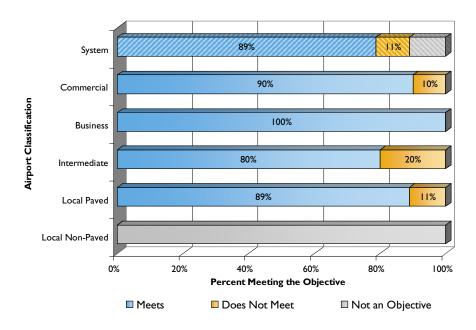



Chart 5-20 Pavement Management Plan Objective - System Performance

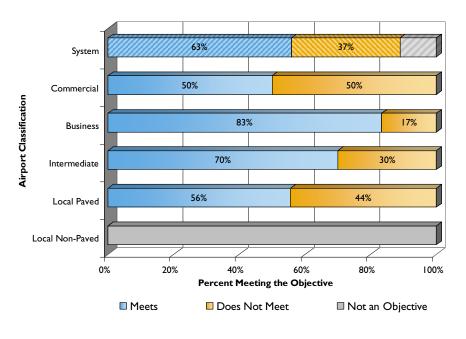
# **5.23 Public Telephone**

It is essential that all Commercial Service, Business, Intermediate and Local Paved Airports in the system have 24-hour telephone access available to airport users. A telephone is suggested at Local Non-Paved Airports. Telephones are important in emergency situations, especially at night when airports are most often unattended. While some airports throughout the country are seeing a decrease in the demand for public telephones, limited cellular telephone coverage at and around many of the Wyoming airports makes a public telephone essential. The telephone objective for each classification is shown in **Table 5-46**.

Table 5-46Public Telephone Objective

| Classification              | Objective                  |  |
|-----------------------------|----------------------------|--|
| Commercial Service Airports | 24-hour Public Telephone   |  |
| Business Airports           | 24-hour Public Telephone   |  |
| Intermediate Airports       | 24-hour Public Telephone   |  |
| Local Paved Airports        | 24-hour Public Telephone   |  |
| Local Non-Paved Airports    | Public Telephone Suggested |  |




#### 5.23.1 System Performance – Public Telephone

**Table 5-47** lists the individual airports which do not meet the objective. All Commercial Service and Business Airports not meeting the objective have telephones available; however, they are not available 24-hours. The phone may be available in the commercial service terminal or in a general aviation facility. One Intermediate and many of the Local Airports have no telephone service available to airport users. Sixty-three percent of airports in the system meet the telephone objective as shown in **Chart 5-21**.

| Airport     | Existing Terminal Deficiency | Facility or Service Needed to Meet<br>Objective |
|-------------|------------------------------|-------------------------------------------------|
| Casper      | Phone not 24-Hour            | 24-hour Telephone                               |
| Cody        | Phone not 24-Hour            | 24-hour Telephone                               |
| Laramie     | Phone not 24-Hour            | 24-hour Telephone                               |
| Riverton    | Phone not 24-Hour            | 24-hour Telephone                               |
| Worland     | Phone not 24-Hour            | 24-hour Telephone                               |
| Evanston    | Phone not 24-Hour            | 24-hour Telephone                               |
| Buffalo     | Phone not 24-Hour            | 24-hour Telephone                               |
| Lander      | Phone not 24-Hour            | 24-hour Telephone                               |
| Rawlins     | No Public Phone              | 24-hour Telephone                               |
| Cokeville   | No Public Phone              | 24-hour Telephone                               |
| Dixon       | No Public Phone              | 24-hour Telephone                               |
| Lusk        | Phone not 24-Hour            | 24-hour Telephone                               |
| Thermopolis | Phone not 24-Hour            | 24-hour Telephone                               |

| Table 5-47                                                  |  |  |  |
|-------------------------------------------------------------|--|--|--|
| Public Telephone Objective - Airports Not Meeting Objective |  |  |  |

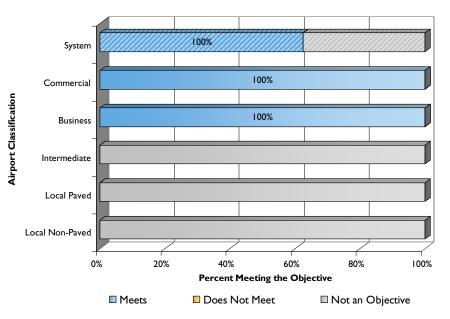
Chart 5-21 Public Telephone Objective - System Performance





# 5.24 Pilot Lounge and Planning Room

Pilot lounges and planning rooms provide an area for both transient and based pilots to rest, plan flights and evaluate weather conditions. Often, pilot lounges and planning rooms can be combined in one dual-purpose room. It is essential that Commercial Service and Business Airports have a pilot lounge or planning room, and it is suggested that Intermediate and Local Paved Airports have a pilot lounge or planning room. For Local Non-Paved Airports, a pilot lounge and planning room is not an objective. The pilot lounge and planning room objective for each classification is shown in **Table 5-48**.


| Table 5-48                           |
|--------------------------------------|
| Pilot Lounge/Planning Room Objective |

| Classification Objective    |                                      |  |
|-----------------------------|--------------------------------------|--|
| Commercial Service Airports | •                                    |  |
| *                           | Pilot Lounge/Planning Room           |  |
| Business Airports           | Pilot Lounge/Planning Room           |  |
| Intermediate Airports       | Pilot Lounge/Planning Room Suggested |  |
| Local Paved Airports        | Pilot Lounge/Planning Room Suggested |  |
| Local Non-Paved             | Not an Objective                     |  |

#### 5.24.1 System Performance – Pilot Lounge/Planning Room

All airports in the system meet the objective for pilot lounge and planning room. System performance of this objective is shown in **Chart 5-22**.







# 5.25 Public Restrooms

It is essential that each Commercial Service, Business and Intermediate Airport in the system have a public restroom available 24-hours to airport users. A restroom provides a location for airport users to take shelter and use restroom facilities. For Local Paved and Local Non-Paved Airports, restrooms are suggested. **Table 5-49** lists the public restroom objective.

Table 5-49Public Restroom Objective

| Classification              | Objective           |  |
|-----------------------------|---------------------|--|
| Commercial Service Airports | 24-hour Restrooms   |  |
| Business Airports           | 24-hour Restrooms   |  |
| Intermediate Airports       | 24-hour Restrooms   |  |
| Local Airports              | Restrooms Suggested |  |
| Local Non-Paved Airports    | Restrooms Suggested |  |

## 5.25.1 System Performance – Public Restroom Objective

Airports not meeting this objective are shown in **Table 5-50.** Thirty-eight percent of the airports in the system do not meet the restroom objective as shown in **Chart 5-23.** It is important to note that all airports not meeting this objective have restrooms available during daytime or business hours but not on a 24-hours basis.

| Airport      | Existing Terminal Deficiency | Facility or Service Needed to Meet<br>Objective |
|--------------|------------------------------|-------------------------------------------------|
| Casper       | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Gillette     | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Laramie      | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Riverton     | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Rock Springs | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Sheridan     | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Worland      | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Evanston     | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Greybull     | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Saratoga     | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Buffalo      | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Kemmerer     | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Lander       | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Powell       | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Rawlins      | Restrooms not 24-Hour        | 24-hour Restrooms                               |
| Wheatland    | Restrooms not 24-Hour        | 24-hour Restrooms                               |

Table 5-50Public Restroom Objective - Airports Not Meeting Objective



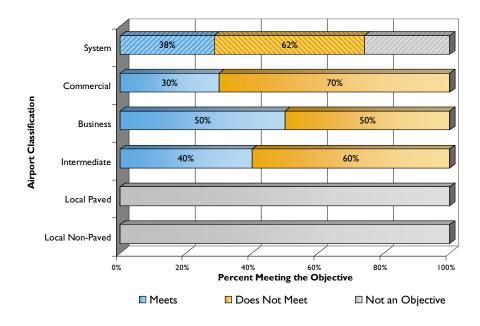



Chart 5-23 Pubic Restroom Objective - System Performance

# 5.26 Primary Runway Length

The length of an airport's runway is a determining factor in the type of aircraft that can operate at a particular airport. Many factors including runway gradient, mean maximum temperature, relative humidity and airport elevation determine the required runway length. FAA Advisory Circular (AC) 150/5325-4B, *Runway Length Requirements for Airport Design*, outlines runway length requirements for different aircraft family groupings taking into account these varying factors.

It is important to note that other varying factors such as aircraft takeoff weight and engine performance can affect the required runway length for an individual aircraft. Larger aircraft can require a longer runway to operate at full capacity. These aircraft may be able to operate on shorter runway lengths if they compensate by reducing the takeoff weight by carrying less fuel, passengers and/or cargo. This can have economic consequences for an airline and can result in a passenger being "bumped" from a flight. General aviation aircraft are also affected by runway length; local businesses and airport users may not be able to utilize an airport and its benefits to the full potential.

The aircraft flight manual of the critical aircraft at each airport should be consulted to evaluate the required runway length in the local master planning process.



#### 5.26.1 Commercial Service and Business Airports

The runway length objective for Commercial Service and Business Airports is a runway length to accommodate 75% of large aircraft at 60% useful load. Large aircraft are defined as aircraft with maximum certified takeoff weight of more than 12,500 pounds. **Table 5-51** lists a sampling of popular aircraft types in use today that comprise "75% of large aircraft".

|                               | -                           |           |
|-------------------------------|-----------------------------|-----------|
| Aircraft                      | Max Takeoff Weight<br>(lbs) | Notes     |
| Bombardier Challenger         | 21,591                      | Jet       |
| Cessna Citation X             | 16,011                      | Jet       |
| Cessna 680 Citation Sovereign | 13,600                      | Jet       |
| Learjet 40                    | 21,000                      | Jet       |
| Learjet 45                    | 21,500                      | Jet       |
| Dassault Falcon 900           | 48,300                      | Jet       |
| Gulfstream IV                 | 33,800                      | Jet       |
| Raytheon Hawker 400           | 16,300                      | Jet       |
| Raytheon Hawker 800XP         | 28,000                      | Jet       |
| Embraer Brasilia              | 26,433                      | Turboprop |
| CRJ 200                       | 47,450                      | Jet       |

Table 5-5 I Sampling of 75% of Large Aircraft

*Source*: FAA Advisory Circular (AC) 150/5325-4B, *Runway Length Requirements for Airport Design*, Bombardier.com, Cessna.com, Hawkerbeechcraft.com, Jane's All the World's Aircraft (2004-2005)

Runway length performance curves from FAA AC 150/5325-4B *Runway Length Requirements for Airport Design* for 75% of large aircraft at 60% useful load were used to compute the required runway length for each Commercial Service and Business Airport taking into consideration their respective elevations, mean maximum daily temperature and runway gradient. According to AC 150/5325-4B, paragraph 302, the recommended runway length for small airplanes at airports with elevations above 5,000 feet mean sea level (MSL) *may* be greater than the runway length criteria for aircraft over 12,500 pounds due to aircraft performance at high altitude airports. At these airports, if the small aircraft runway length is greater, this length must govern runway length calculations. Therefore, runway length requirements for 95% of small aircraft were also calculated for each Commercial Service and Business Airport. The greater of these lengths was used for airports at elevations over 5,000 feet MSL.

The "useful load" of an aircraft consists of the maximum allowable gross weight minus the operating empty weight. The useful load consists of fuel, passengers and cargo. These runway lengths have been calculated with the aircraft operating at 60% useful load.

#### 5.26.2 Intermediate Airports

The runway length objective used for Intermediate Airports is a length that serves 95% of small aircraft. Small aircraft are defined as aircraft weighing 12,500 pounds or less maximum certified takeoff weight. According to AC 150/5325-4B, airports that are intended to serve



medium sized population communities with diverse airport usage should have a runway length that is able to serve 95% of small aircraft. **Table 5-52** lists a sampling of popular aircraft types that comprise 95% of small aircraft. This runway length was calculated for each individual Intermediate Airport taking into consideration individual airport elevation, mean maximum daily temperature, and the runway gradient.

| Aircraft              | Max Takeoff Weight<br>(lbs) | Notes         |
|-----------------------|-----------------------------|---------------|
| Beech Barron B58      | 5,500                       | Twin Engine   |
| Beech Bonanza         | 3,650                       | Single Engine |
| Beech King Air 200    | 11,800                      | Twin Engine   |
| Beechcraft Premier 1A | 12,500                      | Jet           |
| Cessna 172 Skyhawk    | 2,450                       | Single Engine |
| Cessna 182 Skylane    | 3,100                       | Single Engine |
| Cessna 206 Stationair | 3,600                       | Single Engine |
| Cessna 208 Caravan    | 8,000                       | Turboprop     |
| Cessna 400 Series     | 8,600                       | Twin Engine   |
| Cessna Citation CJ1   | 10,700                      | Jet           |
| Cessna Citation CJ2   | 12,500                      | Jet           |
| Cirrus SR20 and SR22  | 3,400                       | Single Engine |
| Citation Mustang      | 8,645                       | Jet           |
| DHC-1 Beaver          | 5,100                       | Single Engine |
| DHC-6-300 Twin Otter  | 12,500                      | Twin Engine   |
| Pilatus PC-12         | 10,450                      | Turboprop     |
| Piper Arrow           | 2,750                       | Single Engine |
| Piper Cheyenne        | 9,000                       | Twin Engine   |
| Piper Navajo          | 6,200                       | Twin Engine   |
| Piper Saratoga        | 3,600                       | Single Engine |
| Piper Seminole        | 3,800                       | Twin Engine   |
| Piper Seneca          | 4,750                       | Twin Engine   |

Table 5-52Sampling of 95% of Small Airplanes

*Source:* Hawkerbeechcraft.com, Airlines.net, Cessna.com, Cirrusdesign.com, Pilatuis-aircraft.com, Newpiper.com

## 5.26.3 Local Airports

The runway length objective for all Local Airports is to maintain the existing runway length(s).

#### 5.26.3.1 System Performance – Primary Runway Length

Runway extensions can require a great deal of planning, land use protection, property acquisition, environmental analysis, cost and time. Shorter runway extensions (less than 500 feet) are, in many cases, not constructed because it is often not a cost-effective airport improvement. Conditions specific to each airport may preclude any extension of a runway, warrant a shorter runway extension, or demand a length in excess of the runway length



objective. Factors such as financing, terrain, and public opposition may also prevent an airport from meeting their runway length objective. More detailed analysis of runway length requirements, runway extension cost/benefit analysis and feasibility should be further analyzed through the local master planning process and the aircraft flight manual of the critical aircraft at each airport should be consulted to evaluate the actual required runway length.

 Table 5-53 summarizes the runway length objective for each airport classification.

| Classification              | Runway Length Objective                  |  |  |
|-----------------------------|------------------------------------------|--|--|
| Commercial Service Airports | 75% of Large Aircraft at 60% Useful Load |  |  |
| Business Airports           | 75% of Large Aircraft at 60% Useful Load |  |  |
| Intermediate Airports       | 95% of Small Aircraft                    |  |  |
| Local Paved Airports        | Maintain Existing Length                 |  |  |
| Local Non-Paved Airports    | Maintain Existing Length                 |  |  |

Table 5-53Primary Runway Length Objective

Eleven airports (one Commercial, four Business and six Intermediate) do not meet the minimum runway length objective and they are shown in **Table 5-54**. Seventy-three percent of the airports in the system meet the runway length objective as shown in **Chart 5-24**. In addition, the planned runway lengths for these airports taken from an approved airport layout plan are also shown in this table.

| A ium out                                                                      | Runway Length (Feet) |                      |           |
|--------------------------------------------------------------------------------|----------------------|----------------------|-----------|
| Airport                                                                        | Existing             | Planned <sup>1</sup> | Objective |
| Jackson                                                                        | 6,300                | 6,300                | 7,600     |
| Afton <sup>2</sup>                                                             | 7,023                | 7,023                | 7,300     |
| Douglas <sup>2</sup>                                                           | 6,532                | 9,000                | 6,700     |
| Evanston                                                                       | 7,300                | 9,000                | 8,400     |
| Saratoga <sup>2</sup>                                                          | 8,800                | 8,800                | 9,000     |
| Big Piney                                                                      | 6,803                | 8,250                | 8,200     |
| Guernsey <sup>2</sup>                                                          | 5,491                | 5,500                | 5,600     |
| Kemmerer <sup>2</sup>                                                          | 8,208                | 8,700                | 8,500     |
| Lander                                                                         | 5,000                | 5,005                | 6,900     |
| Newcastle <sup>2</sup>                                                         | 4,800                | 5,300                | 5,100     |
| Rawlins                                                                        | 7,008                | 8,150                | 8,200     |
| Notes: <sup>1</sup> From Approved Airport Layout Plans                         |                      |                      |           |
| <sup>2</sup> Objective Runway Length within 500 feet of Existing Runway Length |                      |                      |           |

Table 5-54Primary Runway Length Objective - Airports Not Meeting Objective



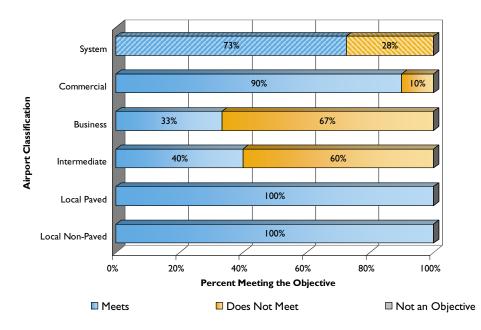



Chart 5-24 Primary Runway Length Objective - System Performance

# 5.27 Primary Runway Edge Lighting

The type of runway edge lighting installed is linked to the type of instrument approach and the desired visibility minimums; it is also a requirement for night operations. Runway edge lighting is named based on the intensity of the light and includes; High (HIRL), Medium (MIRL), and Low Intensity Runway Lights (LIRL).

FAA requires HIRL installations at FAR Part 139 airports with a precision approach and HIRL is typically combined with precision instrument installations. Airports with Runway Visibility Range (RVR) equipment, MALSR, and centerline and touchdown zone lights can achieve lower visibility minimum. Using this combination of equipment, a lower visibility minimum can usually be achieved. HIRL combined only with a precision approach provides for greater visibility of the runway environment and also allows for future upgrades to achieve lower visibility minimums.

Airports with a precision approach, MALSR and MIRL can achieve visibility minimums as low as <sup>1</sup>/<sub>2</sub> mile. No additional equipment is required. MIRL can also be installed at locations with a non-precision instrument approach. MIRL and LIRL are typically installed at locations with a non-precision instrument approach and/or night operations.

Runway edge markers are used to delineate and mark the edge of the runway surface at non-paved airports.



The objectives by classification for runway edge lighting are presented in Table 5-55.

| Primary Runway Edge Lighting Objective       |      |  |
|----------------------------------------------|------|--|
| Classification Objective                     |      |  |
| Commercial Service Airports                  | HIRL |  |
| Business Airports                            | MIRL |  |
| Intermediate Airports                        | MIRL |  |
| Local Paved Airports MIRL                    |      |  |
| Local Non-Paved Airports Runway Edge Markers |      |  |

Table 5-55 Primary Runway Edge Lighting Objective

#### 5.27.1 System Performance – Primary Runway Edge Lighting

Nine airports (three Commercial Service and six Local) do not meet the primary runway edge lighting objective as shown in **Table 5-56**. Seventy-eight percent of airports in the system meet the primary runway lighting objective. **Chart 5-25** shows the system performance of the primary runway lighting objective.

#### Table 5-56 Primary Runway Edge Lighting Objective - Airports Not Meeting Objective

| Airport                  | Existing Runway Lighting | Runway Lighting Objective |  |
|--------------------------|--------------------------|---------------------------|--|
| Cody                     | MIRL                     | HIRL                      |  |
| Laramie                  | MIRL                     | HIRL                      |  |
| Worland                  | MIRL                     | HIRL                      |  |
| Cokeville                | None                     | MIRL                      |  |
| Glendo (non-paved)       | None                     | Runway Edge Markers       |  |
| Green River (non-paved)  | None                     | Runway Edge Markers       |  |
| Medicine Bow (non-paved) | None                     | Runway Edge Markers       |  |
| Shoshoni (non-paved)     | None                     | Runway Edge Markers       |  |
| Upton (non-paved)        | None                     | Runway Edge Markers       |  |



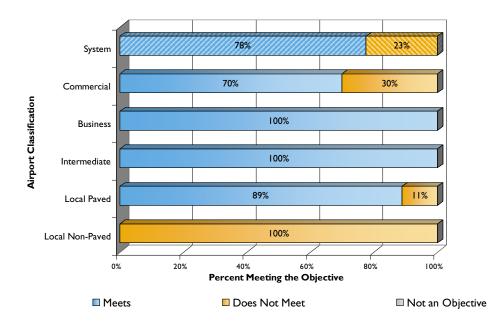



Chart 5-25 Primary Runway Edge Lighting Objective - System Performance

# 5.28 Runway Protection Zone Ownership

Federal Aviation Administration guidance states that control over the RPZ is preferably exercised through acquisition of property interest in the RPZ. Ownership of all existing RPZs is also an objective of Aeronautics. This ownership can be accomplished through acquisition of fee or easement to the ground of the RPZ so the sponsor is able to protect and have complete control over this area of land. Complete control is necessary to be able to remove obstructions and prevent undesired land uses in the RPZ.

It is recognized that not every sponsor is able to have control over the entire RPZ due to special circumstances. However, every effort should be made to control this area through fee or easement to the ground acquisition.

The RPZ ownership objective for each classification is shown in Table 5-57.

| •                           |                                               |
|-----------------------------|-----------------------------------------------|
| Classification              | Objective                                     |
| Commercial Service Airports | Fee or easement ownership of all existing RPZ |
| Business Airports           | Fee or easement ownership of all existing RPZ |
| Intermediate Airports       | Fee or easement ownership of all existing RPZ |
| Local Paved Airports        | Suggested                                     |
| Local Non-Paved Airports    | Suggested                                     |

Table 5-57Runway Protection Zone Ownership Objective



#### 5.28.1 System Performance – Runway Protection Zone Ownership

Each airport not meeting the objective is listed in **Table 5-58**. Twenty-seven percent of airports meet the RPZ ownership objective. System performance of this objective is shown in **Chart 5-26**.

# Table 5-58Runway Protection Zone Ownership Objective - Airports Not Meeting<br/>Objective

| Airport    | Existing                         | Needed to Meet Objective                      |
|------------|----------------------------------|-----------------------------------------------|
| Cheyenne   | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Jackson    | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Riverton   | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Sheridan   | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Worland    | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Douglas    | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Greybull   | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Pinedale   | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Saratoga   | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Big Piney  | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Buffalo    | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Guernsey   | RPZ ownership unknown            | Purchase all in Fee or Easement to the Ground |
| Kemmerer   | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Lander     | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Newcastle  | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Powell     | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Rawlins    | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Torrington | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |
| Wheatland  | All Not Owned in Fee or Easement | Purchase all in Fee or Easement to the Ground |



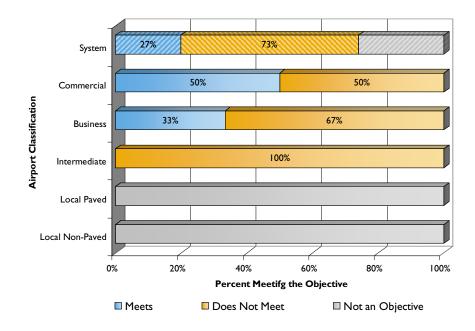



Chart 5-26 Runway Protection Zone Objective - System Performance

# 5.29 Runway Safety Areas

The RSA is an area surrounding the runway prepared in such a way to support aircraft and reduce the risk of damage should the aircraft veer from the runway surface during landing, takeoff or taxi. The area should be also be clear of obstructions and properly graded. The RSA is a function of the ARC, airplane design group and the visibility minimums that can be achieved by the type of installed instrument approach. The objective for each classification of airport, with the exception of Local Non-Paved Airports, is that each paved runway meets standard FAA requirements.

Table 5-59 summarizes the runway safety area objective for each airport classification.

| Classification              | RSA Objective                     |  |
|-----------------------------|-----------------------------------|--|
| Commercial Service Airports | Standard RSA on all paved runways |  |
| Business Airports           | Standard RSA on all paved runways |  |
| Intermediate Airports       | Standard RSA on all paved runways |  |
| Local Paved Airports        | Standard RSA on all paved runways |  |
| Local Non-Paved             | Not an Objective                  |  |

Table 5-59 Runway Safety Area Objective



#### 5.29.1 System Performance – Runway Safety Area

Airports not meeting the RSA objective and the actions needed to meet the objective are shown in **Table 5-60**. Fifty-four percent of the system airports meet the RSA objective as shown in **Chart 5-27**.

| Airport     | Runway         | Existing Deficiency                    | RSA Objective                        | Action Needed to<br>Meet Objective         |
|-------------|----------------|----------------------------------------|--------------------------------------|--------------------------------------------|
| Gillette    | 16/34          | Non-standard grade                     | Standard RSA on all paved runways    | Grade to standards                         |
| Riverton    | 10/28          | Infrangible antenna in RSA             | Standard RSA on all<br>paved runways | Relocate antenna                           |
| Afton       | 16/34          | Pond in RSA                            | Standard RSA on all<br>paved runways | Remove pond                                |
| Greybull    | 15/33          | Non-standard grade                     | Standard RSA on all<br>paved runways | Grade to standards                         |
| Pinedale    | 11/29          | Numerous gopher<br>holes               | Standard RSA on all<br>paved runways | Relocate gophers, fill holes               |
| Saratoga    | 05/23          | Non-standard grade                     | Standard RSA on all<br>paved runways | Grade to standards                         |
| Guernsey    | 14/32          | Non-standard grade                     | Standard RSA on all<br>paved runways | Grade to standards                         |
| Kemmerer    | 04/22          | Non-standard grade                     | Standard RSA on all<br>paved runways | Grade to standards                         |
| Lander      | 03/21          | Non-standard grade                     | Standard RSA on all<br>paved runways | Grade to standards                         |
| Newcastle   | 13/31          | Non-standard grade                     | Standard RSA on all<br>paved runways | Grade to standards                         |
| Rawlins     | 10/28          | Non-standard grade                     | Standard RSA on all<br>paved runways | Grade to standards                         |
| Torrington  | 10/28<br>02/20 | Non-standard grade                     | Standard RSA on all<br>paved runways | Grade to standards                         |
| Cokeville   | 15/33          | Non-standard grade<br>and fence in RSA | Standard RSA on all paved runways    | Grade to standards.<br>Remove obstructions |
| Hulett      | 13/31          | Non-standard grade                     | Standard RSA on all paved runways    | Grade to standards                         |
| Lusk        | 10/28          | Obstruction in RSA                     | Standard RSA on all paved runways    | Remove obstruction                         |
| Thermopolis | 01/19          | Non-standard grade                     | Standard RSA on all<br>paved runways | Grade to standards                         |

Table 5-60Runway Safety Area Objective - Airports Not Meeting Objective

Source: 2007 WYDOT Aeronautics Design Standards Documents



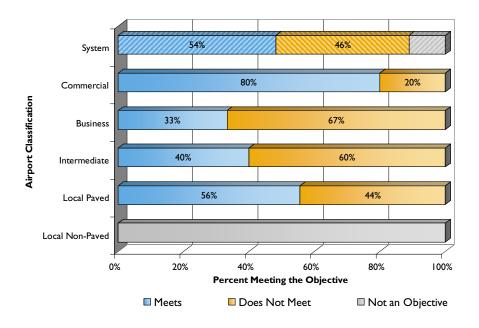



Chart 5-27 Runway Safety Area Objective - System Performance

# 5.30 Primary Runway Strength

#### 5.30.1 Runway and Pavement Types

Adequate airport pavement is required to provide the necessary support of the loads imposed by aircraft or vehicles normally traversing the pavement. In general, pavement strength is obtained through a combination of base materials and pavement courses including: sub-base, base and surface material. The desired pavement strengths can be obtained through either asphalt concrete pavement (asphalt) or portland cement concrete (concrete). Generally, asphalt pavements are less expensive but have a shorter useful life and require more annual maintenance than concrete. However, the frequency and type of use, type of soil, type of subbase, mix of asphalt/concrete, weather conditions, moisture content and maintenance, can all play a large role in the length of useful life of any pavement.

Pavement strength at individual airports should be determined by the existing or ultimate critical aircraft using or forecast to use that facility. Occasionally, a fuel truck, snow plow or other large maintenance vehicle may require more pavement strength than the critical aircraft. As with the runway length and width objectives, the pavement strength objectives determined are minimum requirements.

In addition to the paved runways discussed above, airports may also have unpaved runways. Unpaved runways generally function in the role of a secondary or crosswind runway although some airports use an unpaved surface as a primary runway. These runways are typically used seasonally and by smaller aircraft; as such, there is no pavement strength objective associated with unpaved runways. Spring brings thawing and higher moisture content generally providing an unsuitable surface to support an aircraft. Summer months are the time these types of runways see much higher use.



#### 5.30.2 Aircraft Gear Configuration

The type and configuration of landing gear of an aircraft need to be considered when determining pavement strength. Examples of landing gear configurations include Dual-Tandum, Dual, and Single wheel configurations. Generally, larger, heavier aircraft have dual-tandum or dual landing gear configurations. These wider configurations help to support the weight of the aircraft as well as spread the loads imposed on the pavements over a larger surface area.

The pavement strength and wheel configuration associated with each classification of airport is indicated in the following sections.

#### 5.30.3 Commercial Service Airports

Commercial Service Airports are generally intended to accommodate commercial airline activity and support business aircraft. However, because they are designed to accommodate larger aircraft, it follows that this design will also be able to accommodate less demanding aircraft. Occasional use by larger aircraft is also possible on a case by case basis. Therefore, the Commercial Service Airports are able to accommodate the largest percentage of aircraft, large, medium or small. Typically, the commercial service aircraft demands are met, most if not all of the business aircraft demands should also be met. To determine the pavements strength objective for Commercial Service Airports, a review of the commercial service aircraft currently using the Commercial Service Airports was conducted and is presented in **Table 5-61**.

| Aircraft Identifier                                         | Description      | Maximum Takeoff<br>Weight (lbs.) | Wheel<br>Configuration |
|-------------------------------------------------------------|------------------|----------------------------------|------------------------|
| BE1                                                         | Beech 1900D      | 16,950                           | DWG                    |
| CRJ                                                         | CRJ 200          | 47,450                           | DWG                    |
| CRJ7 <sup>1</sup>                                           | CRJ 700          | 72,750                           | DWG                    |
| DH2                                                         | Dash 8-200       | 36,300                           | DWG                    |
| EM2                                                         | Embraer Brasilia | 26,433                           | DWG                    |
| B757 <sup>1</sup>                                           | Boeing 757       | 255,000                          | DWG                    |
| A319 <sup>1</sup>                                           | Airbus 319       | 141,100                          | DWG                    |
| Notes: DWG – Dual Wheel Gear configuration                  |                  |                                  |                        |
| <sup>1</sup> Used only at Jackson Hole for seasonal service |                  |                                  |                        |

Table 5-612008 Existing Commercial Service Aircraft Operating in Wyoming

Source: Official Airline Guide, Boeing (www.boeing.com), Jane's All the World's Aircraft (2004-2005)



It was determined that the minimum pavement strength of 55,000 pounds Dual Wheel Gear be the pavement strength objective for Commercial Service Airports. This pavement strength accommodates the existing regularly scheduled airline service operating in Wyoming as well as business aircraft use which is the main intended use of this classification of airport. Demand at these airports is not anticipated to change dramatically in the future which would dictate use of larger/heavier aircraft. If changes to the airline fleet occur, this pavement strength should accommodate these changes.

#### 5.30.4 Business Airports

The minimum pavement strength of 30,000 pounds single wheel gear was determined for Business Airports. This pavement strength accommodates aircraft expected to use Business Airports in Wyoming including small to medium business jets and turboprop aircraft.

#### 5.30.5 Intermediate Airports

The pavement strength objective for Intermediate Airports is 20,000 pounds single wheel gear. This pavement strength accommodates aircraft which commonly use Intermediate airports including single engine, turboprop and small jet aircraft.

## 5.30.6 Local Airports

It was determined that the pavement strength objective for Local Paved Airports is 12,500 pounds single wheel gear. This pavement strength accommodates small aircraft expected to use Local Airports. For Local Non-Paved Airports pavement strength is not an objective.

## 5.30.7 Paved Runway Strength Objective

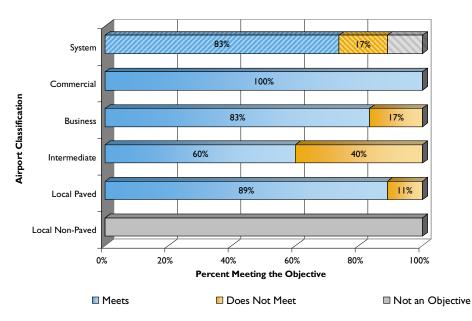
It is important that airports perform maintenance such as crack sealing on their existing pavement and maintain existing pavement strength and usability.

The pavement strength objective by airport classification is summarized in Table 5-62.

| <b>*</b>                                             | • •                                    |  |
|------------------------------------------------------|----------------------------------------|--|
| Classification                                       | Paved Runway Strength Objective (lbs.) |  |
| Commercial Service Airports                          | 55,000 DWG                             |  |
| Business Airports                                    | 30,000 SWG                             |  |
| Intermediate Airports                                | 20,000 SWG                             |  |
| Local Paved Airports                                 | 12,500 SWG                             |  |
| Local Non-Paved Airports Not an Objective            |                                        |  |
| Note: SWG – Single Wheel Gear, DWG – Dual Wheel Gear |                                        |  |

Table 5-62Paved Runway Strength Objective




#### 5.30.7.1 System Performance – Runway Strength

A total of six airports (one Business, four Intermediate and one Local) in the system do not meet the minimum runway strength objective for the primary runway at the airport as shown in **Table 5-63**. Eighty-three percent of the airports meet the runway strength objective as shown in **Chart 5-28**.

|           | <u> </u>          |                    |
|-----------|-------------------|--------------------|
| Airport   | Existing Strength | Strength Objective |
| Afton     | 24,000 SWG        | 30,000 SWG         |
| Buffalo   | 12,500 SWG        | 20,000 SWG         |
| Kemmerer  | 18,000 SWG        | 20,000 SWG         |
| Powell    | 15,000 SWG        | 20,000 SWG         |
| Wheatland | 15,000 SWG        | 20,000 SWG         |
| Cokeville | 10,000 SWG        | 12,500 SWG         |

Table 5-63Paved Runway Strength Objective - Airports Not Meeting Objective





# 5.31 Primary Runway Width

The runway width objectives coincide with the ARC objectives. The runway width is designed to accommodate aircraft in the respective ARC considering operations in a low visibility environment.



Table 5-64 summarizes the runway width objectives for each airport classification.

Table 5-64Primary Runway Width Objective

| Classification                                                                     | Runway Width Objective (Feet) |  |
|------------------------------------------------------------------------------------|-------------------------------|--|
| Commercial Service Airports                                                        | 100                           |  |
| Business Airports                                                                  | 100                           |  |
| Intermediate Airports                                                              | 75                            |  |
| Local Paved Airports 75                                                            |                               |  |
| Local Non-Paved Airports Maintain Existing Width                                   |                               |  |
| Note: Width coincides with ARC Objective. AC 150/5300-13 Change 12, Airport Design |                               |  |

#### 5.31.1 System Performance – Primary Runway Width

One Business Airport and two Local Airports do not meet the minimum primary runway width objective and are shown in **Table 5-65**. Ninety-three percent of the airports meet the primary runway width objective as shown in **Chart 5-29**.

Table 5-65Primary Runway Width Objective - Airports Not Meeting Objective

| Airport   | Existing Width (Feet) | Width Objective (Feet) |
|-----------|-----------------------|------------------------|
| Afton     | 75                    | 100                    |
| Cokeville | 60                    | 75                     |
| Dubois    | 60                    | 75                     |







# 5.32 Taxiway Type and Width

Taxiways are used by pilots to transition aircraft on the ground from one part of the airport to another. Each runway is accessed by means of some type of taxiway or taxiway system. At larger Commercial Service Airports, a taxiway system can be extensive whereas at smaller airports, a single taxiway may simply provide a short connection of the terminal area to the runway environment. Taxiways are either a full length parallel taxiway to the runway it serves, partial parallel, or a connector taxiway. In addition, turn-around pads are typically located at the runway ends between the runway and taxiway and are used by pilots to perform "run-ups" prior to takeoff. They are also used as a staging area when another aircraft is landing or taking off. Taxiway width is dictated by the ARC established for the airport. **Figure 5-1** shows examples of each taxiway type.

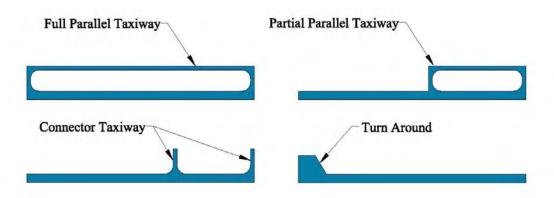


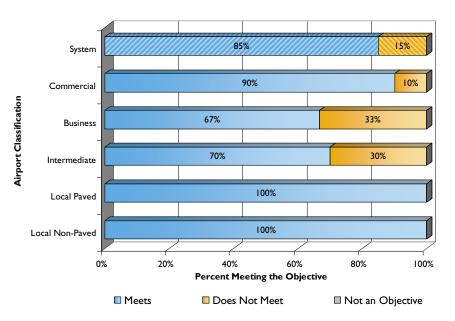

Figure 5-1 – Taxiway Types

It is essential that both Commercial Service and Business Airports have a full length parallel taxiway. For Intermediate Airports, it is essential to have a partial parallel, connector and/or a turn around at the end of the runway. Any one, or a combination of these types, is desired for Intermediate Airports. The objective for all Local Airports (paved and non-paved) is to maintain the existing taxiway facilities. **Table 5-66** shows the minimum facility objectives for taxiways by classification.

|       | Airport Classification  |                         |                                                      |                                      |                                      |
|-------|-------------------------|-------------------------|------------------------------------------------------|--------------------------------------|--------------------------------------|
|       | Commercial<br>Service   | Business                | Intermediate                                         | Local Paved                          | Local<br>Non-Paved                   |
| Туре  | Full Length<br>Parallel | Full Length<br>Parallel | Partial Parallel,<br>Connector and/or<br>turn around | Maintain<br>Existing<br>Taxiways (s) | Maintain<br>Existing<br>Taxiways (s) |
| Width | 35 feet                 | 35 feet                 | 35 feet                                              | Maintain<br>Existing<br>Taxiway(s)   | Maintain<br>Existing<br>Taxiway(s)   |

Table 5-66Taxiway Type and Width Objective




## 5.32.1 System Performance – Taxiway Type and Width

Airports not meeting the taxiway type and/or width objective are shown in **Table 5-67**. Eighty-five percent of the airports in the system meet the taxiway type and width objectives. System performance of taxiway type and width is found in **Chart 5-30**.

| Airport    | Existing Taxiway Deficiency  | Taxiway Needed to Meet Objective                              |  |
|------------|------------------------------|---------------------------------------------------------------|--|
| Laramie    | Partial Parallel             | Full Parallel                                                 |  |
| Afton      | Partial Parallel             | Full Parallel                                                 |  |
| Greybull   | Partial Parallel             | Full Parallel                                                 |  |
| Guernsey   | Partial Parallel – 30' width | Partial Parallel – 35' width                                  |  |
| Kemmerer   | Connector – 21' width        | Partial Parallel, Connector and/or turn<br>around – 35' width |  |
| Torrington | Parallel – 30' width         | Partial Parallel – 35' width                                  |  |

Table 5-67Taxiway Type and Width Objective - Airports Not Meeting Objective





# 5.33 Taxiway Lighting

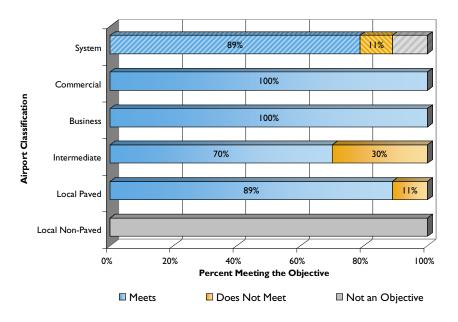
Taxiway lighting is a function of the type of approach at the facility. If there is a precision or non-precision instrument approach, Medium Intensity Taxiway Lighting (MITL) is the standard design. If the approach is visual, Low Intensity Taxiway Light (LITL) can be installed. However, installation of reflective markers is a more common practice and a more economical option for visual runways. It is desired that airports install MITL on taxiways when the runway is also paved and lighted. At airports with night operations but no LITL or MITL, reflectors are often installed along the pavement edge. Airports without runway and taxiway lighting or reflectors are available for daytime operations only.



**Table 5-68** shows the taxiway lighting objective by classification.

Table 5-68Taxiway Lighting Objective

| Classification              | Objective                   |  |
|-----------------------------|-----------------------------|--|
| Commercial Service Airports | MITL                        |  |
| Business Airports           | MITL                        |  |
| Intermediate Airports       | MITL                        |  |
| Local Paved Airports        | Reflectors (MITL Suggested) |  |
| Local Non-Paved Airports    | Not an Objective            |  |


### 5.33.1 System Performance – Taxiway Lighting

Airports not meeting the taxiway lighting objective are shown in **Table 5-69**. Eighty-nine percent of the airports in the system meet the taxiway lighting objective as shown in **Chart 5-31**.

Table 5-69Taxiway Lighting Objective - Airport Not Meeting Objective

| Airport    | Existing Taxiway Deficiency | Taxiway Needed to Meet Objective |
|------------|-----------------------------|----------------------------------|
| Lander     | Reflectors                  | MITL                             |
| Powell     | Reflectors                  | MITL                             |
| Torrington | Reflectors/MITL             | MITL                             |
| Cokeville  | None                        | Reflectors (MITL Suggested)      |

Chart 5-3 I Taxiway Lighting Objective - System Performance





# 5.34 Terminal Building

An objective of the Wyoming Aviation System is to provide an integrated system of airports with similar facilities. Commercial Service Airports have much greater needs than any of the other airports in the system due to airline service facility needs, passenger needs, etc. Terminal buildings at general aviation airports provide shelter for pilots and passengers during inclement weather and provide space for flight planning, business meetings, etc. The type of facility, amenities, size, etc., should be determined through the local master planning process.

 Table 5-70 summarizes the terminal building objective.

| Terminal Building Objective |                      |  |
|-----------------------------|----------------------|--|
| Classification              | Terminal Building Ob |  |
| vial Compies Aimports       | Terminal Duilding    |  |

**Table 5-70** 

| Classification              | Terminal Building Objective |  |
|-----------------------------|-----------------------------|--|
| Commercial Service Airports | Terminal Building           |  |
| Business Airports           | Terminal Building           |  |
| Intermediate Airports       | Terminal Building           |  |
| Local Paved Airports        | Not an Objective            |  |
| Local Non-Paved Airports    | Not an Objective            |  |

## 5.34.1 System Performance – Terminal Building

As shown in Chart 5-32, all airports in the system meet the terminal building objective.

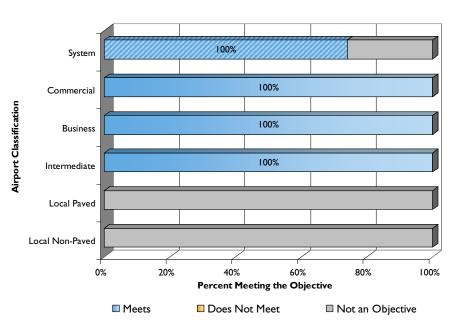



Chart 5-32 Terminal Building Objective - System Performance



# 5.35 Visual Aids

## 5.35.1 Other Visual Aids

Other visual aids include: Runway End Identifier Lights (REIL), PAPI, VASI, Beacons and Wind Cones. These types of equipment all provide visual guidance to pilots. REIL identify the runway threshold, PAPI and VASI provide visual approach path guidance to the runway threshold, Beacons visually aid pilots in locating an airport from a distance, and Wind Cones help a pilot determine wind direction and velocity to aid in identifying the preferred runway for landing or takeoff.

REIL consist of two flashing lights located near the threshold of a runway and are used for early identification of the runway environment and threshold. When a runway has an approach lighting system installed to a runway end, the REIL is not required and would be considered redundant. However, when a non-precision approach is used and no approach lighting system is in place, it is essential to have REIL installed on both runway ends.

PAPI and VASI consist of two to four box systems and provide color coded signals to the approaching pilot. The purpose of the PAPI and VASI is to provide visual approach slope guidance to the runway of intended use. The PAPI system has generally replaced the VASI system for new installations. PAPIs should be installed even if there is a precision or non-precision approach and at airports with significant terrain issues.

The airport beacon is used by pilots operating under VFR conditions as a means to visually identify an airport from a distance. Once the pilot has located the airport and is in the vicinity, typically the pilot flies over the airport and observes a wind indicator such as a wind cone to note the direction of the wind and the velocity. This aids the pilot in selecting the correct runway for landing and/or takeoff. The wind indicator can also be lighted to aid pilots conducting night operations.

The objectives for other visual aids are listed in Table 5-71.

|                                                                                                                                         | Airport Classification      |                             |                             |                                            |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------|---------------------|
|                                                                                                                                         | Commercial<br>Service       | Business                    | Intermediate                | Local Paved                                | Local Non-<br>Paved |
|                                                                                                                                         | REIL (Both<br>Ends)         | REIL (Both<br>Ends)         | REIL (Both<br>Ends)         | REIL – One<br>End (Both Ends<br>Suggested) | Not an<br>Objective |
| Other Visual Aids <sup>1</sup>                                                                                                          | PAPI or VASI<br>(Both Ends)                | Not an<br>Objective |
| Alus                                                                                                                                    | Beacon                      | Beacon                      | Beacon                      | Beacon                                     | Not an<br>Objective |
|                                                                                                                                         | Lighted Wind<br>Cone        | Lighted Wind<br>Cone        | Lighted Wind<br>Cone        | Lighted Wind<br>Cone                       | Wind Cone           |
| Note: <sup>1</sup> When runway has ALS installed, opposite end should have REIL. REIL should not be installed on approach end with ALS. |                             |                             |                             |                                            |                     |

Table 5-71Other Visual Aids Objective



#### 5.35.1.1 System Performance – Other Visual Aids

**Table 5-72** shows the airports not meeting the visual aid objective and also identifies what item is needed to meet the objective. All other visual aid components not shown meet the objective. Fifty-eight percent of the airports in the system meet all visual aid objectives. System performance of this objective is shown in **Chart 5-33**.

| Airport Existing Visual Aids<br>Deficiency |                              | Visual Aid Needed to Meet<br>Objective |
|--------------------------------------------|------------------------------|----------------------------------------|
| Douglas                                    | REIL – one runway end        | REIL – both runway ends                |
| Pinedale                                   | REIL – one runway end        | REIL – both runway ends                |
| Saratoga                                   | REIL & PAPI – one runway end | REIL & PAPI – both runway ends         |
| Buffalo                                    | REIL – one runway end        | REIL – both runway ends                |
| Guernsey                                   | No REIL                      | REIL – both runway ends                |
| Lander                                     | No REIL                      | REIL – both runway ends                |
| Powell                                     | REIL – one runway end        | REIL – both runway ends                |
| Rawlins                                    | REIL – one runway end        | REIL – both runway ends                |
| Torrington                                 | REIL – one runway end        | REIL – both runway ends                |
| Wheatland                                  | No REIL                      | REIL – both runway ends                |
| Cokeville                                  | No REIL or PAPI              | REIL & PAPI – one runway end           |
| Dubois                                     | No REIL                      | REIL – one runway end                  |
| Green River (non-paved)                    | No Wind Cone                 | Wind Cone                              |
| Medicine Bow (non-paved)                   | No Wind Cone                 | Wind Cone                              |
| Shoshoni (non-paved)                       | No Wind Cone                 | Wind Cone                              |
| Thermopolis                                | No REIL or PAPI              | REIL & PAPI – one runway end           |
| Upton (non-paved)                          | No Wind Cone                 | Wind Cone                              |

Table 5-72Visual Aids Objective - Airports Not Meeting Objective



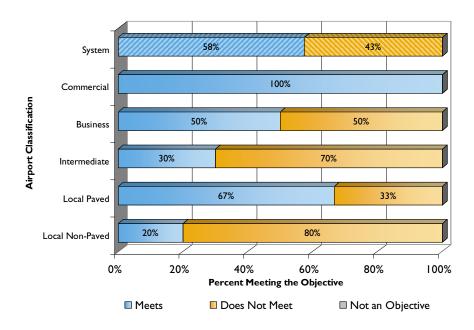



Chart 5-33 Visual Aids Objective - System Performance

# 5.36 Weather Reporting Facilities

AWOS and ASOS are weather stations located on airports which provide weather information to pilots. These weather reporting facilities broadcast over a radio frequency in order to be available to pilots operating on and in the vicinity of an airport.

Weather reporting facilities objectives are presented in Table 5-73.

| weather Reporting Facilities Objective |                  |  |  |  |  |
|----------------------------------------|------------------|--|--|--|--|
| Classification                         | Objective        |  |  |  |  |
| Commercial Service Airports            | AWOS or ASOS     |  |  |  |  |
| Business Airports                      | AWOS or ASOS     |  |  |  |  |
| Intermediate Airports                  | AWOS or ASOS     |  |  |  |  |
| Local Paved Airports                   | AWOS or ASOS     |  |  |  |  |
| Local Non-Paved Airports               | Not an Objective |  |  |  |  |

Table 5-73Weather Reporting Facilities Objective



## 5.36.1 System Performance – Weather Reporting Facilities

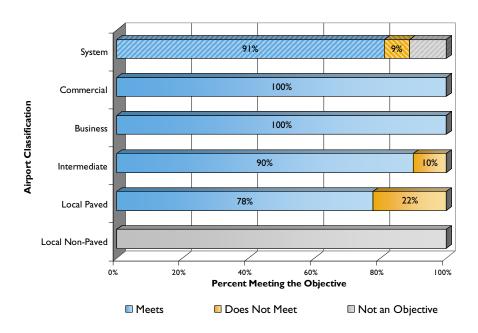

Ninety-one percent of airports meet the weather reporting objective. The three airports not meeting the objective are shown in **Table 5-74** and system performance is shown in **Chart 5-34**.

Table 5-74Weather Reporting Facilities Objective - Airports Not Meeting Objective

| Airport     | Existing Weather<br>Reporting Facility | Weather Facility Needed to<br>Meet Objective |
|-------------|----------------------------------------|----------------------------------------------|
| Wheatland   | None                                   | AWOS or ASOS                                 |
| Cokeville   | None                                   | AWOS or ASOS                                 |
| Thermopolis | None                                   | AWOS or ASOS                                 |

Chart 5-34

#### Weather Reporting Facilities Objective - System Performance



# 5.37 Wind Coverage

The minimum recommended wind coverage for an airport is ninety-five percent95%. This can be accomplished on a single runway or through a combination of runways. Generally, if an airport has two or more runways, it more than likely meets the 95% coverage. Wind data collected at the specific airport site is the most reliable data. As stated in **Chapter 3**, the 95% coverage is computed on the basis of the crosswind not exceeding 10.5 knots for ARC A-I and B-I, 13 knots for ARC A-II and B-II, 16 knots for ARC A-III, B-III, and C-I through D-III, and 20 knots for ARC A-IV through D-VI. If an airport has only one runway and does not meet 95% wind coverage for the airport's respective ARC, then crosswind runway alternatives should be considered. If an airport has more than one runway, the wind coverage



of each runway should be combined. If 95% is obtained through a combination of runways, no additional runways should be required.

The objectives for wind coverage by classification of airport are as shown in **Table 5-75**. For clarification purposes, the ARC objectives are also shown.

|                            | 0,   |                           |
|----------------------------|------|---------------------------|
| Airport                    | ARC  | Wind Coverage Objective   |
| Commercial Service Airport | C-II | 95% at 16 knots           |
| Business Airport           | C-II | 95% at 16 knots           |
| Intermediate Airport       | B-II | 95% at 13 knots           |
| Local Paved Airport        | B-II | 95% at 13 knots Suggested |
| Local Non-Paved Airport    | A-II | 95% at 13 knots Suggested |

Table 5-75 Wind Coverage Objective

### 5.37.1 System Performance – Wind Coverage

Airports not meeting the wind coverage objectives are shown in **Table 5-76**. Seventy-seven percent of the airports in the system meet the wind coverage objective as shown in **Chart 5-35**.

| Airport    | Existing Wind Coverage Potential Solutions to Meet Object |                                                                                    |  |
|------------|-----------------------------------------------------------|------------------------------------------------------------------------------------|--|
| Jackson    | Unknown                                                   | Obtain Wind Data – 95% Coverage                                                    |  |
| Pinedale   | Unknown                                                   | Obtain Wind Data – 95% Coverage                                                    |  |
| Saratoga   | Unknown                                                   | Obtain Wind Data – 95% Coverage                                                    |  |
| Guernsey   | Unknown                                                   | Obtain Wind Data – 95% Coverage                                                    |  |
| Torrington | Unknown                                                   | Obtain Wind Data – 95% Coverage                                                    |  |
| Wheatland  | 93.83% at 13 knots                                        | Obtain wind data at airport site, reorient runway<br>or construct crosswind runway |  |

Table 5-76Wind Coverage Objective - Airports Not Meeting Objective



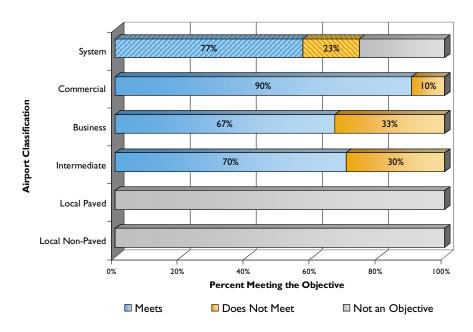



Chart 5-35 Wind Coverage Objective - System Performance

## 5.38 Combined System Performance

The following charts show how the Wyoming Aviation System is performing related to the facility, service and administration objectives that have been set for each classification of airport. The charts are organized by system performance, Commercial Service Airport performance, Business Airport performance, Intermediate Airport performance, and Local Paved and Local Non-Paved Airport performance. When a specific category was not an objective for all airports, only those airports where the objective applied were considered in the system performance.





| Chart 5-36       |                 |    |  |  |  |  |
|------------------|-----------------|----|--|--|--|--|
| <b>Overall S</b> | ystem Performan | ce |  |  |  |  |

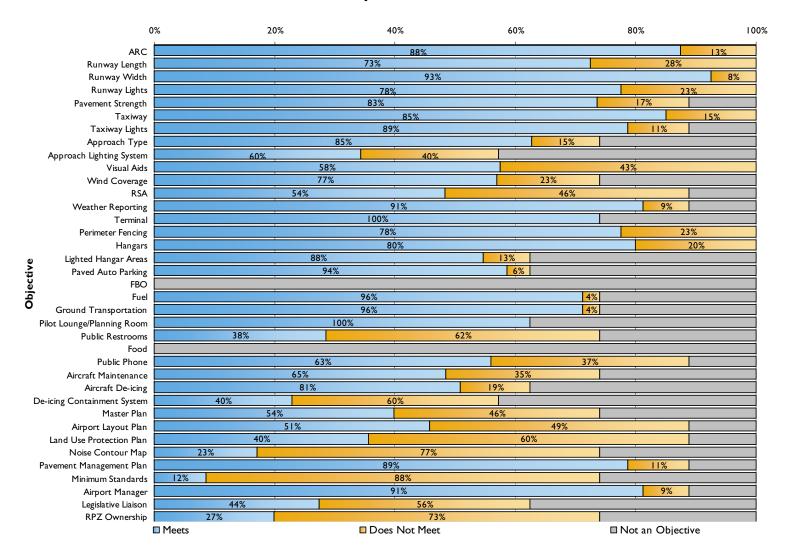
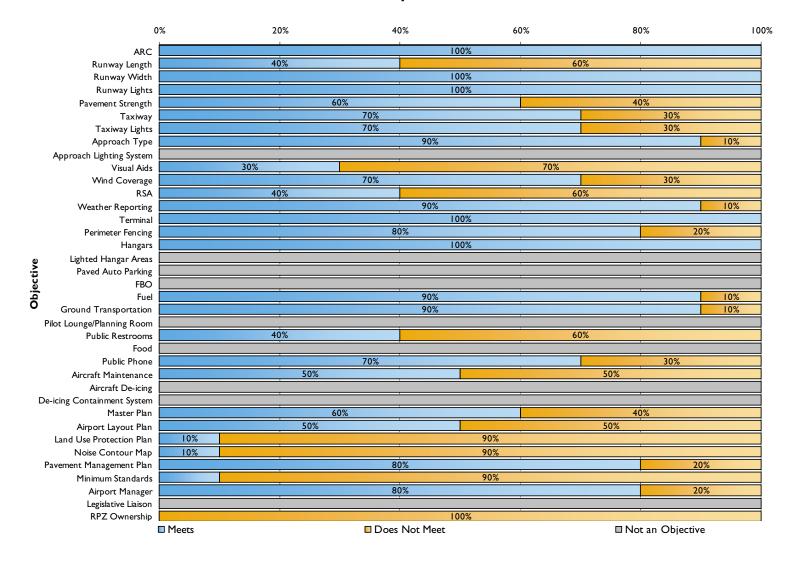





Chart 5-37 Commercial Service Airports Performance

| (                                        | 0%                                           | 20% | 40% | 60%  | 6   | 80%                                   | 100% |  |
|------------------------------------------|----------------------------------------------|-----|-----|------|-----|---------------------------------------|------|--|
| ARC                                      |                                              |     | 90% |      |     |                                       | 10%  |  |
| Runway Length                            | 90%                                          |     |     |      |     |                                       |      |  |
| Runway Width                             | 100%                                         |     |     |      |     |                                       |      |  |
| ,<br>Runway Lights                       |                                              | 1   | 70% | I    |     | 30%                                   |      |  |
| Pavement Strength                        |                                              |     |     | 100% |     | · · · · · · · · · · · · · · · · · · · |      |  |
| Taxiway                                  |                                              | •   | 90% | 1    |     |                                       | 10%  |  |
| ,<br>Taxiway Lights                      |                                              |     |     | 100% |     |                                       |      |  |
| Approach Type                            |                                              | 1   | 70% |      |     | 30%                                   |      |  |
| Approach Lighting System                 |                                              | 60% |     |      |     | 40%                                   |      |  |
| Visual Aids                              |                                              | •   |     | 100% |     | •                                     |      |  |
| Wind Coverage                            |                                              |     | 90% |      |     |                                       | 10%  |  |
| RSA                                      |                                              |     | 80% | 1    |     | 20%                                   |      |  |
| Weather Reporting                        |                                              |     |     | 100% |     | •                                     |      |  |
| Terminal                                 |                                              |     |     | 100% |     |                                       |      |  |
| Perimeter Fencing                        |                                              | •   |     | 100% |     | •                                     |      |  |
| Hangars                                  |                                              | 50% | •   |      | 50% | •                                     |      |  |
| <ul> <li>Lighted Hangar Areas</li> </ul> |                                              |     | 90% |      |     |                                       | 10%  |  |
| Paved Auto Parking                       |                                              |     |     | 100% |     |                                       |      |  |
| Paved Auto Parking<br>FBO<br>Fuel        |                                              |     |     |      |     |                                       |      |  |
| Fuel                                     |                                              |     |     | 100% |     |                                       |      |  |
| • Ground Transportation                  |                                              |     |     | 100% |     |                                       |      |  |
| Pilot Lounge/Planning Room               |                                              |     | 1   | 100% |     |                                       |      |  |
| Public Restrooms                         | 30%                                          |     |     |      | 70% |                                       |      |  |
| Food                                     |                                              |     |     |      |     |                                       |      |  |
| Public Phone                             |                                              | 50% |     |      | 50% | •                                     |      |  |
| Aircraft Maintenance                     |                                              |     | 80% |      |     | 20%                                   |      |  |
| Aircraft De-icing                        |                                              |     | 90% |      |     |                                       | 10%  |  |
| De-icing Containment System              |                                              | 10% |     |      | 60% | •                                     |      |  |
| Master Plan                              |                                              |     | 70% |      |     | 30%                                   |      |  |
| Airport Layout Plan                      |                                              | 10% |     |      | 60% |                                       |      |  |
| Land Use Protection Plan                 |                                              | 60% |     |      |     | 40%                                   |      |  |
| Noise Contour Map                        | 30%                                          |     |     |      | 70% |                                       |      |  |
| Pavement Management Plan                 |                                              |     | 90% |      |     |                                       | 10%  |  |
| Minimum Standards                        | 20%                                          |     |     | 80%  | 6   |                                       |      |  |
| Airport Manager                          |                                              |     |     | 100% |     |                                       |      |  |
| Legislative Liaison                      |                                              | 50% |     |      | 50% |                                       |      |  |
| RPZ Ownership                            |                                              |     |     |      |     |                                       |      |  |
|                                          | Meets     Does Not Meet     Not an Objective |     |     |      |     |                                       |      |  |




| Chart 5-38                           |
|--------------------------------------|
| <b>Business Airports Performance</b> |

| (                                | )%    | 20% | 40   | %        | 60% | 80%            | 100%  |
|----------------------------------|-------|-----|------|----------|-----|----------------|-------|
| ARC                              |       |     | 67%  |          |     | 33%            |       |
| Runway Length                    | 33    | %   |      |          | 67% |                |       |
| Runway Width                     |       |     |      | 83%      |     |                | 17%   |
| Runway Lights                    |       |     |      | 100%     |     |                |       |
| Pavement Strength                |       |     |      | 83%      |     |                | 17%   |
| Taxiway                          |       |     | 67%  |          |     | 33%            |       |
| Taxiway Lights                   |       |     |      | 100%     |     |                |       |
| Approach Type                    |       |     |      | 100%     |     |                |       |
| Approach Lighting System         |       | •   |      |          |     | •              |       |
| Visual Aids                      |       | 50% |      |          |     | 50%            |       |
| Wind Coverage                    |       |     | 67%  |          |     | 33%            |       |
| RSA                              | 33    | %   |      |          | 67% |                |       |
| Weather Reporting                |       |     |      | 100%     |     |                |       |
| Terminal                         |       |     |      | 100%     |     |                |       |
| Perimeter Fencing                |       |     |      | 83%      |     |                | 17%   |
| Hangars                          |       |     | 67%  |          |     | 33%            |       |
| ο Lighted Hangar Areas           |       |     |      | 83%      |     |                | 17%   |
| Paved Auto Parking               |       |     |      | 83%      |     |                | 17%   |
| Paved Auto Parking<br>FBO<br>FUE |       |     |      |          |     |                |       |
| Fuel                             |       |     |      | 100%     |     |                |       |
| • Ground Transportation          |       |     |      | 100%     |     |                |       |
| Pilot Lounge/Planning Room       |       | •   |      | 100%     |     |                |       |
| Public Restrooms                 |       | 50% |      |          |     | 50%            |       |
| Food                             |       |     |      |          |     |                |       |
| Public Phone                     |       |     |      | 83%      |     |                | 17%   |
| Aircraft Maintenance             |       |     | 67%  |          |     | 33%            |       |
| Aircraft De-icing                |       |     | 67%  |          |     | 33%            |       |
| De-icing Containment System      |       |     |      |          |     |                |       |
| Master Plan                      | 17%   |     |      |          | 83% |                |       |
| Airport Layout Plan              | 17%   |     |      |          | 83% |                |       |
| Land Use Protection Plan         |       | 50% | ·    |          |     | 50%            |       |
| Noise Contour Map                | 33    | %   |      |          | 67% | 1              |       |
| Pavement Management Plan         |       |     |      | 100%     |     |                |       |
| Minimum Standards                |       |     |      | 100%     |     |                |       |
| Airport Manager                  |       |     |      | 100%     |     |                |       |
| Legislative Liaison              | 33    | %   |      |          | 67% |                |       |
| RPZ Ownership                    | 33'   | %   |      |          | 67% |                |       |
|                                  | Meets |     | Does | Not Meet |     | □ Not an Objec | ctive |



Chart 5-39 Intermediate Airports Performance



