NOTES:

1. USE SIGNAL ARM ATTACHMENT CAP SCREWS CONFORMING TO ASTM A 325.
3. ENSURE THE LONGITUDINAL SEAM WELDS OF THE POLE ARE AT LEAST 3" FROM THE SIDE GUSSET PLATE TO POLE WELDS.
4. ENSURE WELDED SPLICES FOR POLE OR ARM SECTIONS USE FULL-PENETRATION WELDS WITHIN 10 DEGREES OF A STRAIGHT LINE WITH THE TUBE DIAMETER of THE TUBE.
5. ENSURE THE BACKING RING IS WELDED TO THE BASE PLATE PRIOR TO THE ATTACHMENT OF THE ARM OR POLE TO THE BACKING RING. USE ALTERNATE PROCEDURES IF APPROVED BY THE BRIDGE ENGINEER. USE FULL-PENETRATION WELDS FOR THE ACTUAL BACKING RING TO ATTACHMENT OF THE ARM OR POLE TO THE BACKING RING.

SIGNAL ARM ATTACHMENT AND MINIMUM POLE REQUIREMENTS

<table>
<thead>
<tr>
<th>LOAD CASE</th>
<th>A</th>
<th>B</th>
<th>H</th>
<th>W</th>
<th>PLANAR PLATE THICKNESS</th>
<th>ARMS BASE PLATE THICKNESS</th>
<th>MINIMUM POLE DIAMETER</th>
<th>MINIMUM POLE WALL THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6"</td>
<td>12"</td>
<td>4"</td>
<td>14"</td>
<td>3/16"</td>
<td>3/16"</td>
<td>3.65"</td>
<td>3/16"</td>
</tr>
<tr>
<td>2</td>
<td>6"</td>
<td>12"</td>
<td>4"</td>
<td>14"</td>
<td>3/16"</td>
<td>3/16"</td>
<td>3.65"</td>
<td>3/16"</td>
</tr>
<tr>
<td>3</td>
<td>6"</td>
<td>12"</td>
<td>4"</td>
<td>14"</td>
<td>3/16"</td>
<td>3/16"</td>
<td>3.65"</td>
<td>3/16"</td>
</tr>
<tr>
<td>4</td>
<td>6"</td>
<td>12"</td>
<td>4"</td>
<td>14"</td>
<td>3/16"</td>
<td>3/16"</td>
<td>3.65"</td>
<td>3/16"</td>
</tr>
</tbody>
</table>

**VALUES SHOWN ARE AT AND BELOW THE SIGNAL ARM CONNECTION. ENSURE POLE WALL THICKNESS ABOVE THE SIGNAL ARM CONNECTION IS NOT LESS THAN 3/16".

**SHEET NO. 4 FOR DIAMETER AND WALL THICKNESS REQUIREMENTS FOR SIGNAL ARMS. SEE SHEET NO. 4 FOR REQUIREMENTS OF POLES WITH DOUBLE SIGNAL ARMS.
LOAD CASE 4

SIGNAL ARM DATA

<table>
<thead>
<tr>
<th>Signal Arm Length</th>
<th>Arm Base Diameter</th>
<th>Threads per Inch</th>
<th>Height of Base Plate</th>
<th>Cap Screws</th>
<th>Attachment Cap Screw</th>
<th>Base Thickness</th>
<th>Flange Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>8'-0"</td>
<td>12"</td>
<td>5/8"</td>
<td>12"</td>
<td>12" x 4"</td>
<td>1.5" x 4"</td>
<td>2"</td>
<td>2"</td>
</tr>
<tr>
<td>55'-0"</td>
<td>12"</td>
<td>5/8"</td>
<td>12"</td>
<td>12" x 4"</td>
<td>1.5" x 4"</td>
<td>2"</td>
<td>2"</td>
</tr>
</tbody>
</table>

NOTES:

1. Use pole with a minimum base diameter of 15", a minimum wall thickness of 0.3125" at and below the signal arm connection, and a minimum wall thickness of 0.239" above the highest signal arm connection.
2. Use base plate and anchor bolts corresponding to load case 4 requirements.
3. Ensure arm base diameter does not exceed the specified diameter.
4. Do not use spacing less than 10'-0" between the centers of the three head sections of adjacent signal arms.

DOUBLE SIGNAL ARM LOADING

NOTES:

1. Use pole with a minimum base diameter of 15" when neither signal arm length exceeds 55'-0".
2. Use pole with a minimum base diameter of 16.25" when one or both signal arm lengths exceed 55'-0".
3. Use pole with a minimum wall thickness of 0.562" at and below the highest signal arm connection, and a minimum wall thickness of 0.3125" above the highest signal arm connection.
4. Use pole with two separate signal arm to pole connection assemblies. Ensure attachment height of the longer signal arm is 1'-3" less than the arm attachment height specified on Sheet 1. Attach shorter signal arm above the longer signal arm providing 4" clearance between the two signal arms to pole connection assemblies.

ADDED NOTE FOR LOAD CASES 4:

REVISED FOR WYDOT'S 2003 STANDARD SPECIFICATIONS

09-MAY-06