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FOREWORD 

The objective of the second phase of the Second Strategic Highway Research Program (SHRP2) 

Implementation Assistance Program (IAP) was to conduct a thorough analysis using a larger set 

of Naturalistic Driving Study trips to extract behavioral trends specific to a wide variety of weather 

conditions on freeway. These weather conditions included rain, snow, and fog from a diverse 

driver population from each of the six SHRP2 data collection sites. The objective of Phase 3 of 

this study is to interpret these findings such that they can be used to inform the development of 

Wyoming-based safety and reliability countermeasures.  

Phase 3 of begins in early 2018 and will conclude in 2019. The solid foundation generated in the 

first two project phases will be used to enhance the existing weather-dependent VSL system 

operated by WYDOT. Specifically, the speed selection models will be validated using available 

data from Wyoming interstates to develop a suitable algorithm for VSL operation. The car-

following, acceleration, lane-changing, lane-wandering, and safety critical event analyses will be 

used to develop weather-related microsimulation model guidance that could be used to evaluate 

future countermeasures. This report will be available online. 

 

Disclaimer 

Notice 

This document is disseminated under the sponsorship of the Wyoming Department of 

Transportation (WYDOT) in the interest of information exchange.  WYDOT assumes no liability 

for the use of the information contained in this document. 

WYDOT does not endorse products or manufacturers. Trademarks or manufacturers’ names appear 

in this report only because they are considered essential to the objective of the document. 

Quality Assurance Statement 

WYDOT provides high-quality information to serve Government, industry, and the public in a 

manner that promotes public understanding. Standards and policies are used to ensure and 

maximize the quality, objectivity, utility, and integrity of its information. WYDOT periodically 

reviews quality issues and adjusts its programs and processes to ensure continuous quality 

improvement. 

Quality Assurance Statement 

The Federal Highway Administration (FHWA) provides high-quality information to serve 

Government, industry, and the public in a manner that promotes public understanding. Standards 

and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its 

information. FHWA periodically reviews quality issues and adjusts its programs and processes to 

ensure continuous quality improvement. 

Copyright 

No copyrighted material, except that which falls under the “fair use” clause, may be incorporated 

into a report without permission from the copyright owner, if the copyright owner requires such. 

Prior use of the material in a WYDOT or governmental publication does not necessarily constitute 

permission to use it in a later publication.  

 • Courtesy — Acknowledgment or credit will be given by footnote, bibliographic reference, or a 

statement in the text for use of material contributed or assistance provided, even when a copyright 

notice is not applicable.  

• Caveat for Unpublished Work —Some material may be protected under common law or equity 
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even though no copyright notice is displayed on the material. Credit will be given and permission 

will be obtained as appropriate.  

• Proprietary Information — To avoid restrictions on the availability of reports, proprietary 

information will not be included in reports, unless it is critical to the understanding of a report and 

prior approval is received from WYDOT. Reports containing such proprietary information will 

contain a statement on the Technical Report Documentation Page restricting availability of the 

report. 

 

Creative Commons: 

The report is covered under a Creative Commons, CC-BY-SA license.  When drafting an adaptive 

report or when using information from this report, ensure you adhere to the following: 

Attribution — You must give appropriate credit, provide a link to the license, and indicate if 

changes were made. You may do so in any reasonable manner, but not in any way that suggests 

the licensor endorses you or your use. 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your 

contributions under the same license as the original. 

No additional restrictions — You may not apply legal terms or technological measures that legally 

restrict others from doing anything the license permits. 

You do not have to comply with the license for elements of the material in the public domain or 

where your use is permitted by an applicable exception or limitation. 

No warranties are given. The license may not give you all of the permissions necessary for your 

intended use. For example, other rights such as publicity, privacy, or moral rights may limit how 

you use the material. 
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EXECUTIVE SUMMARY 

Inclement weather conditions such as fog, snow, ground blizzards, slush, rain, and strong winds 

negatively affect pavement condition, vehicle performance, visibility, and driver behavior and 

performance. Driver behavior exhibits high variability and is difficult to quantify, particularly in 

inclement weather conditions. Driver behavior and performance are imperative to understand 

when describing the influence of adverse weather conditions on roadways’ safety and mobility. 

Adverse weather inhibits driver’s ability to perceive their environment, and visibility reductions 

– caused by adverse weather events – is known to increase the likelihood of crashes. The effects 

of adverse weather on safe and efficient operations of transportation networks have been 

extensively researched; however, specific considerations of driver behavior and performance are 

noticeably absent from these studies. 

The Second Strategic Highway Research Program (SHRP2) Naturalistic Driving Study (NDS) 

and Roadway Information Database (RID) provide an unprecedented opportunity for researchers 

to better understand driving behavior. Having identified the potential benefits and value of this 

unique dataset, this report aimed to evaluate methods by which the data could be used to study 

driver behavior and performance characteristics during adverse weather conditions.  

This report addresses different gaps in the knowledge by presenting innovative methods to 

identify and analyze weather-related naturalistic driving data to better understand driver behavior 

and performance in adverse weather conditions. An innovative methodology to effectively 

identify weather-related trips in real-time using vehicle wiper status and other complementary 

methodologies helped to identify naturalistic driving weather-related trips using external weather 

data sources. In addition, a semi-automated data reduction procedure was developed to process 

raw trip data files into a format that further analyses and modeling techniques could be easily 

applied. The novel approaches developed in this report for NDS trip acquisition and reduction 

could be extended to other naturalistic driving studies worldwide.  

In addition to the contributions in data extraction and reduction, preliminary analysis as well as 

advanced modeling techniques were utilized in this study. These analyses were used to explain 

the relationship between different levels of speed selection and lane keeping behaviors and a set 

of contributing factors including roadway characteristics, environmental and traffic conditions 

and driver demographics on a trajectory level. These modeling techniques ranged from common 

parametric approaches such as binary logistic regression and ordinal logistic/probit regression 

models to a more advanced non-parametric/data mining modeling techniques such as 

Classification and Regression Trees (CART) and Multivariate Adaptive Regression Splines 

(MARS).   

The results from this study suggest that both parametric and non-parametric modeling 

approaches are important to analyze driver behavior and performance. In fact, this study 

attempted to maximize the benefits of the advantages of parametric models, such as the ability of 

interpreting the marginal effects of various risk factors, as well as the advantages of using non-

parametric models, including but not limited to the ability of providing high prediction accuracy, 

handling of missing values automatically, and their capability of handling large number of 

explanatory variables in a timely manner, which might be extremely beneficial specifically for 

assessing traffic operations and safety in real-time considering weather and traffic data to be 
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directly fed into the model. The specific data mining modeling techniques used in this study have 

an additional advantage compared to most of the data mining and machine learning techniques. 

Unlike many other non-parametric models, CART and MARS models are interpretable and 

transparent; therefore, these models do not have the “black box” problem known for most other 

machine learning techniques.  

The results of the developed speed selection models revealed that among various adverse 

weather conditions, drivers were more likely to reduce their speed in snowy weather conditions 

compared to other adverse weather conditions. Specifically, the odds of drivers reducing their 

speeds were 9.29 times higher in snowy weather conditions, followed by rain and fog with 1.55 

and 1.29 times compared to clear conditions, respectively. In addition, variable importance 

analysis using CART method revealed that weather conditions, traffic conditions, and posted 

speed limits are the three most important variables affecting driver speed selection behavior. 

Moreover, the results of the developed lane-keeping models revealed that drivers in heavy rain 

conditions were more likely to have a worse lane-keeping performance compared to clear 

weather conditions.  

The developed speed selection model is a key example of a derived mechanism by which the 

SHRP2 database can be leveraged to improve Weather Responsive Traffic Management 

(WRTM) strategies directly. Moreover, the results may shed some light on driver lane keeping 

behavior at a trajectory level. A better understanding of driver lane-keeping behavior might help 

in developing better Lane Departure Warning (LDW) systems. Evaluating driver behavior and 

performance under the influence of reduced visibility due to adverse weather conditions is 

extremely important to develop safe driving strategies, including Variable Speed Limits (VSL). 

Many roadways across the U.S. currently have weather-based VSL systems to ensure safe 

driving environments during adverse weather. Current VSL systems mainly collect traffic 

information from external sources, including inductive loop detector, overhead radars and Closed 

Circuit Television (CCTV). However, human factors especially driver behavior and performance 

such as selection of speed and acceleration/ deceleration behaviors during adverse weather are 

neglected due to the lack of appropriate driver data. The findings from this study indicated that 

the SHRP2 NDS data could be effectively utilized to identify trips in adverse weather conditions 

and to assess the impacts of adverse weather on driver behavior and performance. With the 

evolution of Connected Vehicles, Machine Vision and other real-time weather social crowd 

sources such as WeatherCloud®, more accurate real-time data similar to the NDS data will be 

available in the near future. This study provided early insights into using similar data collected 

from NDS.  
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CHAPTER 1-INTRODUCTION 

Transportation safety, mobility, and reliability are heavily dependent on weather and roadway 

conditions. Adverse weather conditions affect the transportation network by reducing average 

travel speeds, increasing the frequency of crashes, and demanding a substantial portion of agency 

budgets required for weather-related maintenance. The network-wide impacts of adverse weather 

conditions are critical for the planning and operation of an agency’s network during winter 

seasons; however, the low resolution data used in these assessments cannot directly detect 

specific adjustments in individual driver behaviors caused by adverse weather conditions. The 

underlying cause for decreased mobility during inclement weather events is adjustments of 

driving behavior in response to reduced visibility, poor pavement conditions, and limited 

vehicle’s performance. Similarly, crash frequency increases during winter weather events 

because drivers may not adequately shift their behaviors to match current weather conditions (1).  

According to the Fatality Analysis Reporting System (FARS), inclement weather of rain, snow 

and fog/smoke resulted in 5,897 fatal crashes between 2005 and 2014. The NHTSA reported that 

weather contributed to over 22 percent of the total crashes between 2005 and 2014 (2). In 

Canada and the UK, such crashes account for approximately 30 percent and 20 percent, 

respectively (3, 4). The financial burden of weather-related crashes on the U.S. roadways is 

approximately 42 billion U.S. dollars (5). The impact of vision obstruction caused by adverse 

weather conditions on traffic safety and operations has been investigated in previous studies. 

Brodsky and Hakkert, (1988) investigated the risk of traffic crashes in rainy weather conditions 

(6). The study found that the risk of injury crashes in rainy weather conditions could be 

significantly 2 to 3 times greater than in clear weather conditions. Two main risk factors were 

associated with the added risk caused by adverse weather conditions in their study: slippery road 

surface and reduction in visibility. The study concluded that slippery surface conditions caused 

by adverse weather negatively affect driver performance, specifically on curves. In addition, the 

reduction in visibility during adverse weather increased the risk of crashes, which might be 

exacerbated at night due to distraction and glare produced by shining wet surfaces. A study by 

Andrey et al. (2003) investigated the impact of adverse weather on the severity of crashes in 

several Canadian cities (7). They found a 75 percent increase in total crashes and a 45 percent 

increase in injury crashes in comparison with clear weather conditions. Other studies by Ahmed 

et al. (2012) reported that an additional one-inch increase in precipitation elevated the risk of a 

crash by 169 percent (1). In addition, they stated that the added risk of crashes could be doubled 

in snowy seasons due to the interaction between geometrical characteristics such as steep grades 

and slippery surface conditions. Although there are some variations in estimated risk of crashes, 

most of the previous studies confirmed that risk of crashes could be easily elevated during 

adverse weather, due to affected visibility and surface conditions. Rahman and Lownes, (2012) 

found that drivers might reduce their speed, maintain a larger headway and drive more cautiously 

in adverse weather to compensate for reduced visibility and slippery road conditions (8). 

Drivers make decisions based on their risk perception. Drivers’ decisions to compensate for 

crash risk can be categorized into three hierarchical levels including strategic, tactical, and 

operational (9). The strategic level can be defined as those decisions that usually are made off-

road and called “off-road decisions”. Decisions at this level can be travel mode alternation, route 
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change, trip timing change, etc. Tactical and operational decisions are made on the road. 

Particularly, these decisions are made in high-risk circumstances, including but not limited to 

speed adaptation, lane changing, headway selection, gap acceptance, and evasive maneuvers 

(10).  Each of the mentioned decisions stages might be affected by environmental conditions; in 

particular, adverse weather conditions. Driver attentiveness and control behavior are two 

important factors that might be negatively affected by adverse weather conditions (11).  

As mentioned earlier, previous research aimed to characterize the impacts of adverse weather 

conditions on the transportation network; however, few studies focused directly on the 

fundamental cause of network-wide impacts, driving behavior. Comprehensive analysis of 

driving behavior in adverse weather conditions requires high resolution data collected in a 

variety of adverse weather events by a multitude of drivers. Collection of this type of data is 

expensive and out of scope for most research queries.  

In efforts to advance the state-of-research and provide data to researchers seeking to understand 

driving behavior for improving traffic safety and operations, the second Strategic Highway 

Research Program (SHRP2) generated the Naturalistic Driving Study (NDS) database. The 

SHRP2 NDS database is comprised of more than 5 Million trips from 3,400 drivers in six 

geographic regions across the United States (12). In addition, a second database—Roadway 

Information Database (RID)—was constructed to provide context for NDS trips. The RID 

contains roadway, traffic operations, environmental, and other information corresponding to the 

most-travelled roadways traversed by the NDS participants (13). The creation of these SHRP2 

databases presents researchers an unprecedented opportunity to advance current understandings 

of driving behavior.  

As part of the SHRP2 Implementation Assistance Program (IAP), the Wyoming Department of 

Transportation (WYDOT) established a project to investigate the impact of adverse weather 

conditions on driving behavior for the purpose of establishing practical countermeasures to 

improve the safety, efficiency, and reliability of the Wyoming transportation network during 

harsh winter seasons. This project is expected to produce an updated variable speed limit (VSL) 

algorithm for the existing weather-dependent VSL corridors in Wyoming. In addition, the 

increased understanding of driving behavior in adverse weather conditions is expected to 

improve the accuracy of weather-related microsimulation modeling.  

The SHRP2 IAP is divided into three phases; this report presents the findings from the second 

project phase and introduces ongoing efforts that will be completed in the third project phase. 

The following sections provide an overview of the Wyoming IAP objectives and research 

questions, summarizes the previous findings from Phase 1, and outlines the remainder of the 

report. 

Project Objectives 

The primary goal of the Wyoming SHRP2 IAP project is to leverage the SHRP2 NDS and RID 

databases to enhance the understanding of how drivers respond to adverse weather and road 

conditions. The ultimate objective of this research is to use the findings to develop feasible 

countermeasures that WYDOT can implement on state interstates and highways to improve the 

reliability of the transportation network VSL systems during adverse weather conditions.  
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The original project proposal presented the following research questions: 

1. Can NDS trips occurring in inclement weather be identified efficiently and effectively 

using available NDS and RID data? 

2. Can driver behavior (e.g., speed selection, car-following, and lane wandering) during 

inclement weather conditions be characterized efficiently from the NDS data? 

3. What are the best surrogate measures for weather-related crashes that can be identified 

using the NDS data? 

4. What type of analysis can be performed and conclusions drawn from the resulting 

dataset? 

After completion of the first project phase—proof of concept—the first research was proven 

possible and the remaining research questions were deemed feasible. These findings from Phase 

1 initiated the start of Phase 2, which was intended to build on the concepts developed in Phase 1 

and complete a full analysis on the SHRP2 NDS data. Before the start of Phase 2, the original 

research questions were fine-tuned and detailed with the knowledge derived from Phase 1. 

Specifically, additional questions were raised aiming to introduce additional methods for 

acquiring NDS trips that not only leveraged the SHRP2 data, but also used external weather data 

sources. In addition, specific statistical methods and the calibration of common driving behavior 

models were explored for the purpose of characterizing driver behavior differences in adverse 

weather conditions.  

The objective of the second phase was to conduct a thorough analysis using a larger set of NDS 

trips to extract behavioral trends specific to a wide variety of weather conditions (i.e., rain, snow, 

and fog). The trips would represent a diverse driver population from each of the six SHRP2 data 

collection sites. Using experience from Phase 1, efficient data reduction procedures were 

implemented to process the trip data. Once processed, these data were used in the development 

and calibration of driver behavior models related to speed selection, car-following, and lane 

wandering. In addition, a larger number of crashes and near-crashes were collected and 

evaluated. Ultimately, the final research question—identification of possible analyses and 

feasible conclusions—was refined to target one specific countermeasure that will be the focus for 

Phase 3: 

 Improvement to existing weather-dependent variable speed limit (VSL) control algorithm 

used by WYDOT for their interstate VSL systems. 

In addition, the Wyoming research team identified parallels with the WYDOT Connected 

Vehicle (CV) Pilot project, which intends to establish protocols for and test CV applications 

relevant to rural locations with severe weather conditions and heavy freight traffic (14). As part 

of the CV Pilot, the research team will use microsimulation modeling as a tool to evaluate the 

effectiveness of each CV application; therefore, a reliable base model representing driving 

behavior in adverse weather conditions is required. The SHRP2 IAP project team recognized the 

potential for collaboration and identified two additional Phase 3 objectives:  

 Improved guidance related to microsimulation modeling of adverse weather conditions, 

and generation of a “base model” to represent driving behavior in adverse weather 

conditions for use in the Wyoming CV Pilot project impact assessments. 
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 Evaluation of SHRP2 NDS weather-related vehicle dynamics to support the development 

of real-time CV applications requiring weather and roadway condition input data. 

Phase 1 Overview 

Phase 1 of the Wyoming IAP project consisted of a proof-of-concept review of the SHRP2 NDS 

and RID data that was intended to evaluate the feasibility of answering the original research 

questions. Therefore, a small sample of NDS trips were queried from the SHRP2 NDS database, 

aiming to identify trips related to adverse weather conditions and matching trips occurring in 

clear weather conditions. Phase 1 data acquisition focused on precipitation events and queried 

trips from only two of the six SHRP2 sites: Washington and Florida. Trips occurring in 

precipitation were identified by tracking the windshield wiper status of the vehicles and 

extracting trips with active windshield wipers. In addition, a matching protocol was established 

in this phase to identify additional trips taken by the same driver on the same route in clear 

conditions.  

Manual data reduction was performed in the first project phase to gain familiarity with the 

SHRP2 NDS data and suggest procedures for automating various elements of the process. The 

most time-consuming process involved manual video observation to classify weather conditions 

for each trip; therefore, the Wyoming research team began the development of the Wyoming 

NDS Visualization and Reduction software. This software provided an effective platform for 

viewing NDS data using a convenient graphical user interface and initialized efforts to detect 

visibility levels from the front video camera.  

The preliminary analysis of driver behavior focused on selected speeds, acceleration, headways, 

and lateral lane position. As part of this analysis, behavior distributions in different 

classifications of adverse weather and traffic flow conditions were shown to be different. For 

example, in free flow conditions and heavy rainfall, driver speeds followed a Weibull 

distribution, while in free flow and clear weather conditions, driver speeds followed a Normal 

distribution. Additional findings suggested that speed reductions were statistically significant in 

heavy precipitation, and an increase in the speed variability during precipitation events was 

detected. Aggressive braking and acceleration events were evaluated and findings suggested that 

average deceleration was higher in clear weather conditions, when compared to matching 

adverse weather trips. In addition, lateral lane position was studied by evaluating drivers’ ability 

to maintain their position in their lane and their tendencies to make lane changes. Results showed 

that the frequency of lane changes is higher in clear weather conditions, and in adverse 

conditions, the amount of lane-wandering (i.e., lateral movement within the travel lane) was 

increased. Lastly, driver headways were larger in heavy precipitation—compared to clear 

weather conditions—and the variability of headways decreased in heavy precipitation.  

Another avenue of research aimed to maintain the continuity of a single driver, on a single day, 

during various weather conditions. Detailed evaluations of specific trips were conducted to 

analyze the behavior changes of an individual driver on a trip that contained series of weather 

conditions (e.g., the trip’s weather condition was initially classified as light rain, in the middle 

changed to heavy rain, and at the end was classified as clear conditions). The findings from this 

analysis indicated the importance of segmenting each trip by weather condition to ensure 

accurate results.   
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In addition to evaluating NDS trips using summary statistics, preliminary modeling efforts were 

conducted to identify speed selection tendencies in different weather conditions. An ordered 

probit logit model was used to classify speed behavior as a function of traffic, speed limits, 

surface condition, and weather. Results from this model indicated that weather, speed limits, and 

traffic conditions were significant, while weather and traffic conditions played the largest role on 

determining drivers’ speed selection. These analyses provided promising preliminary results, and 

introduced a series of new questions that were later evaluated in Phase 2 of this project. 

Finally, a small sample of weather-related crash and near-crash events were analyzed to identify 

crash surrogate measures. Two vehicle dynamics variables were used as indicators for 

identifying a potential crash: acceleration/deceleration and yaw rate. Thresholds for these 

variables were identified from a review of the available crash and near-crash events. The 

findings from this analysis were used as a baseline for requesting a substantially larger set of 

weather-related crash and near-crash events from the SHRP2 NDS database for analysis in Phase 

2. More information about the Phase 1 findings can be found in Phase 1 Final Report (15). 

Report Outline 

The remainder of this report presents the findings from Phase 2 of the Wyoming IAP project. 

The report is organized as follows: 

Chapter 2 NDS Trip Acquisition and Reduction provides a detailed overview of the 

improved data acquisition and reduction protocols established for Phase 2. 

Chapter 3 Research Findings is divided into sections related to the different areas of 

driving behavior explored in Phase 2, and specific background information, additional data 

processing requirements, and findings are reported for each area. 

Chapter 4 Conclusions and Plans for Phase 3 provides a summary of the findings 

presented in “Research Findings” and relates these findings to practical applications in 

Wyoming. 

  

http://shrp2.transportation.org/Documents/1608F%20RS04215%20Driver%20Performance%20and%20Behavior%20in%20Adverse%20Weather%20Conditions%20WYOMING.pdf
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CHAPTER 2 - NDS TRIP ACQUISITION AND REDUCTION 

The identification and acquisition of weather-related NDS trips was a pivotal objective in this 

project. As part of Phase 1, precipitation events were identified using the windshield wiper 

status; however, in order to gather a wider variety of weather conditions, new methodologies for 

querying the NDS database were required. Once new methods were established to acquire a 

substantially larger quantity of NDS trips, automated data reduction procedures were needed for 

efficient analysis.  

Data Acquisition section describes the three complementary methodologies the project team 

developed to identify weather-related NDS trips, and Data Reduction section describes the semi-

automated data reduction procedures developed for efficient processing of the acquired NDS 

trips. Finally, “Wyoming NDS Visualization and Reduction Tool” section discusses the 

improvements made to the Wyoming NDS Visualization and Reduction tool. 

Data Acquisition 

Acquisition of weather-related NDS trips is a complex procedure that requires the use of NDS 

and RID data elements, as well as a variety of additional data sources. In order to compile a 

comprehensive set of trips occurring in a variety of different weather conditions, three novel 

complementary methodologies were developed in parallel to extract a sufficient number of trips 

for detailed analytics. Each method is shown in Figure 1 and will be discussed in detail in the 

following sections. In addition, subsequent sections provide a summary of the acquired trips and 

an overview of the crash and near-crash events collected. 

 

Figure 1 Complementary Methodologies for Identifying Weather-Related NDS Trips (16) 
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Method 1: Wiper Status 

The first data acquisition method was developed as part of the first project phase and leveraged 

the internal vehicle sensor data capturing the windshield wiper status. In this case, the vehicle’s 

front windshield wiper setting was captured to identify events in which precipitation occurred. 

The time-series variable capturing the windshield wiper status provides an indication of the 

windshield wiper switch, rather than directly reporting the blade speed. Using the guidance from 

Phase 1, the following procedures were defined to identify NDS trips in rainfall, without 

introducing bias: 

1. Vehicles with multiple wiper settings were targeted; vehicle data without the full 

spectrum of values for the wiper status (0, 1, 2, and 3) were filtered out because vehicles 

with only on/off wiper settings cannot provide an indication of rain intensity. 

2. Months with heavy precipitation in all of the SHRP2 data collection regions were 

targeted. 

3. Trips in non-daylight conditions and on non-freeways were removed; freeways were 

considered based on the project scope and nighttime trips were eliminated due to low 

video resolution. 

4. Extracted trips were tagged with the percentage of the trip in which different wiper 

settings (0, 1, 2, and 3) were active, which was used to identify trips of interest in various 

levels of precipitation. 

While this method produced a sufficient number of trips for Phase 1, limitations are prevalent 

when evaluating precipitation rates using the reported wiper setting. For example, all motorists 

drive differently and have unique tolerance thresholds to different rates of precipitation. In 

addition, a review of data from Phase 1 indicated that in Honda Civic vehicles, the front camera 

was positioned above the reach of the wiper blades; therefore, during all rain events, the camera 

image was blurred and deemed unusable (15). To overcome these limitations, two additional 

methods were proposed. These complementary methods not only captured additional 

precipitation events from vehicles without complete wiper status readings, but also enabled the 

collection of data in different weather conditions (i.e., conditions that did not require windshield 

wiper activation). 

Method 2: NCDC Weather Stations 

The second data acquisition method leveraged external weather data sources. For this procedure, 

weather conditions were queried from the National Climatic Data Center (NCDC), which is a 

database available through Climate Data Online (CDO). The NCDC archives weather data from 

various weather stations nationwide, including radar, satellites, airport weather stations, and 

military weather stations. Among these data sources, the airport weather stations proved to be the 

most beneficial to identifying adverse weather events. Over 5 GB of weather data from more 

than 250 weather stations in the six NDS states (between 2010 and 2013) were collected from the 

National Oceanic and Atmospheric Administration (NOAA) - National Climatic Data Center 

(NCDC) website. 

Airports’ automated weather stations monitor weather conditions continuously and record the 

weather parameters according to predefined changes in their values; for that reason, the data do 

not follow a specific time pattern, but report weather conditions relative to real time weather 

changes. The weather parameters collected include visibility, temperature, humidity, wind speed 
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and direction, and precipitation. Among these parameters, visibility is considered one of the most 

critical factors affecting driver behavior. Visibility can generally be described as the maximum 

distance that an object can be clearly perceived against the background sky; visibility impairment 

can be a result of both natural (e.g., fog, mist, haze, snow, rain, windblown dust, etc.) and human 

induced activities (transportation, agricultural activities, fuel combustion, etc.). The automated 

weather stations cannot directly measure the visibility, but rather calculate it from a measurement 

of light extinction, which includes the scattering and absorption of light by particles and gases. 

Previous studies concluded that airport weather stations can provide spatial-temporal weather 

conditions for adjacent roadways within five nautical miles and within a two hour time period at 

60 percent to 80 percent accuracy (17). In this study, daily weather data were acquired and NDS 

trips were requested based on the daily weather information to identify all trips impacted by 

adverse weather events (such as those conducted on ice or slush road surfaces), not only those 

occurring during active precipitation or fog. Therefore, the date and time for every weather event 

was superimposed on the NDS trips for freeways within five nautical miles.  

 

Figure 2 Weather stations and a representation of the five nautical mile coverage area for 

extrapolating weather conditions, example from Washington State (16) 

 

Figure 2 shows weather stations used to identify the snow-related trips in Washington and 

depicts the concept of a five nautical mile coverage area used in the data acquisition process. In 

total, 24 GIS-shape files were provided representing rain, snow, and fog conditions for the six 

NDS states for the extraction of NDS trips.  

Method 3: Weather-Related Crashes 

The third data acquisition methodology has a similar concept to method 2. Instead of using 

weather-stations to extrapolate weather conditions onto surrounding freeways, method 3 uses 
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weather-related crashes to identify surrounding NDS trips that were impacted by the same 

adverse weather conditions. Crash databases were queried and times and locations of weather-

related crashes occurring in the NDS data collection regions were extracted. Using the same 

procedures described in “Method 2: NCDC Weather Stations”, the spatial and temporal data 

from each crash were uploaded to GIS, and shape files containing these data were provided to 

Virginia Tech Transportation Institute (VTTI) for NDS trip extraction. Figure 3 illustrates the 

weather related crashes from the state of Washington and the concept of the five nautical mile 

coverage area. 

 

Figure 3 Weather-related crashes and a representation of the five nautical mile coverage 

area for extrapolating weather conditions, example from Washington State (16) 

Summary of Acquired NDS Trips 

Using these complementary methodologies, the research team received 11,164 trips flagged as 

being weather-related and 22,328 matched trips in clear weather conditions (i.e., same driver, 

same route). In total, this resulted in 11,205 hours of driving data. The identified NDS trips 

involved 1,523 drivers between 16 and 99 years of age with the majority of the drivers in the 

young age group, 16 to 29 years old. Gender representation was balanced in most age groups, 

with the exception of a slight overrepresentation of female drivers between 20 and 24 years old. 

The age and gender distributions for the collected trips and the entire SHRP2 database are shown 

in Figure 4. 
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Figure 4 Age and gender distribution for collected vs. original SHRP2 NDS data (16) 

Data reduction was critical to identifying false-positives, or trips flagged as being weather-

related but actually occurred in clear or dry conditions. After extensive data reduction, which is 

described in detail in Data Reduction section, a total of 4,094 freeway trips (~37 percent) were 

verified as being adverse weather trips. Of these adverse trips, 3013 occurred in rain, 234 in fog, 

320 in snow, 317 in clear conditions with wet pavement, and 210 in clear conditions with snow-

covered pavement. A summary of the trips collected from each methodology are shown in Figure 

5. 

 

Figure 5 Summary of received trips of each weather classification for the three 

complementary methodologies (16) 

Crash and Near Crash Events 

In addition to collect full NDS trips, the NDS crash and near-crash databases were queried for 

weather-related events. This query produced 37 crashes, 266 near crashes, 606 matched non 

safety-critical events in all represented weather conditions, and 1,176 baseline trips. Manual 

video verification revealed that only 16 crashes occurred on freeways (7 in rain and 9 in clear 

weather), and 213 events contained near-crash events (33 in rain or sleet, and 182 in clear 

weather). 



 

11 

 

Data Reduction 

Once NDS trips were collected, efficient data reduction procedures were required to sift through 

the 33,000 trip files. Using the experience gained from the first project phase, the research team 

developed the Wyoming NDS Data Analysis Tool (DAS). The DAS is a python-based analytic 

tool that ingests the time-series trip data, performs a variety of reduction functions, and produces 

summary observation templates, summary statistics, and graphical representations of the data. 

The main functionalities of the DAS are described in the following sections. 

Dimensionality Reduction & Time Chunking 

Upon ingesting an NDS trip, the DAS first reduces the data dimensionality by extracting time-

series variables identified in the first phase as being relevant for evaluation of driving behavior in 

inclement weather. Additional variables can be analyzed with minor adjustments to the tool; 

however, the intention of this step is to reduce the complexity of the data analytics to improve 

processing speed. The next step included a time-series data processing technique called “time 

chunking”. Analyses in Phase 1 revealed high variability in weather conditions within a single 

trip; therefore, the concept of time chunking was used to segment out equal sections for analysis. 

Each trip was divided into one-minute segments to create homogeneous “chunks” with similar 

environmental and traffic conditions. This process was introduced in Phase 2 to improve the 

computational efficiency and analysis output quality by improving driving environment (i.e., the 

driving environment defined by weather, traffic, and roadway conditions) homogeneity.  

Video Observation Template 

The DAS enables semi-automatic data reduction. Full automation of these procedures is not 

feasible because identification of the driving environment (i.e., weather, traffic, and roadway 

conditions) cannot be automatically generated with the current state of vision learning 

algorithms. A detailed discussion of automated detection efforts using the Wyoming SHRP2 

NDS data is found in “Wyoming NDS Visualization and Reduction Tool” section. 

In order to enhance and expedite the required manual video observation, the DAS generates 

observation templates for each trip. The observation template identifies each X-minute segment 

within the trip by its corresponding start and stop timestamps and leaves data fields for video 

reviewers to report observed environmental and traffic conditions prevalent in each segment. 

Figure 6 shows a sample video observation template generated by the DAS using five-minute 

time chunks. However, most analyses utilized one-minute time chunks, and the trips were 

reduced with one-minute time chunks. 
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Figure 6 Sample video observation template produced by the DAS 

Manual Video Observation and Annotation 

The most time-intensive component of the data reduction process is the actual manual video 

observation and annotation. Advanced machine learning algorithms are being explored to 

identify novel methods to automate elements of this manual process; however, the quality of the 

NDS video data and variations in the camera angle in different vehicles are challenging obstacles 

to overcome. More discussions of this effort are provided in “Wyoming NDS Visualization and 

Reduction Tool” section. Therefore, a systematic procedure was used to gather the driving 

environment data from the video footage manually. This also served as a ground truth data for 

the machine vision effort. 

This procedure involves the classification of roadway, weather, surface, visibility, and traffic 

conditions in explicitly defined categories. To eliminate subjectivity and any potential bias in 

identifying weather, traffic, or roadway conditions, comprehensive training and a detailed 

description of each condition was provided to video viewers before the manual observation 

began. The manual observation categories defined for this procedure are shown in Table 1. 
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Table 1 Manual Observation Categories 

Roadway Type Surface Conditions Traffic Conditions 

Freeway 0 Dry 1 LOS A 1 

Non-Freeway 1 Wet 2 LOS B 2 

Weather Conditions Snow-covered 3 LOS C 3 

Clear 1 Ice-covered 4 LOS D 4 

Light Rain 2 Visibility LOS E 5 

Heavy Rain 3 Low  1 LOS F 6 

Snow 4 Moderate 2  

Fog 5 High 3 

Sleet 6  

Data Aggregation & Summary File Generation 

Once manual observations of trips are complete, the DAS ingests the completed files and 

aggregates the information based on user input to produce summary files, data graphics, and 

inputs for analytic models. An example of a user input could be requesting all driving data 

occurring on a freeway, in heavy rain, with wet surface conditions, low visibility, and a level of 

service (LOS) below C. The DAS could then generate summary statistics related to average 

speeds, headways, accelerations, etc. for all data available for trips meeting those criteria. In 

addition, the research team can add another element to the query to focus on driver behaviors 

from drivers with specific demographics, personally-defined risk taking and perception surveys, 

or a series of cognitive tests. 

Wyoming NDS Visualization and Reduction Tool 

The Wyoming NDS Visualization and Reduction Tool (VRT) was initially developed in Phase 1; 

however, improvements to the functionality and usability were conducted during Phase 2. The 

VRT was used for manual video observation because it conveniently synchronizes the front and 

rear video feeds with user-defined time-series variables (e.g., speed, acceleration) and interprets 

radar data. A screen shot of the VRT graphical user interface is shown in Figure 7. In addition to 

the data visualization benefits, the research team developed VRT’s image processing algorithms 

using various visibility estimation and machine learning techniques. Ultimately, the goal is to 

enable automatic video observation, so to further expedite the data reduction procedures. The 

following sections contain details related to each of these efforts. 
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Figure 7 Wyoming Visualization and Reduction Tool (16) 

Visibility Estimation Algorithm 

The visibility estimation algorithm applies methods that look for object boundaries and edges as 

a way to assess the existence of objects and their clarity in the image. This technique assumes 

that an image of an adverse weather conditions is, generally, blurrier than that of a clearer 

weather. The algorithm calculates the Laplacian filter of the image and estimates the visibility 

level based on its magnitude. The algorithm is heuristic; therefore, accurate results for all input 

images are not guaranteed. The accuracy of the visibility estimation algorithm depends on 

numerous factors including: the training data set, the filter magnitude interpreted, cutoff limits 

used for different weather conditions, and the input image quality. The Visibility Index (VI) is 

the resulting value given to an image to describe its visibility level. The VI is expressed as a 

percentage and classified in one of three levels: low, medium, or high. More work is in progress 

to improve the methods for deriving the VI values, as well as to produce representative ranges of 

VI values for each classification (i.e., low, medium, high). As the visibility estimation algorithm 

is still under development and refinement, only experimental accuracies can be defined. 

Preliminary testing of the algorithm using 19 video files suggests a 79 percent accuracy (14 trips 

yielding results consistent with human observation; 2 trips yielding partially consistent results, 

and 3 trips yielding inconsistent results). 
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CHAPTER 3 - RESEARCH FINDINGS 

Once initial data acquisition and reduction were completed, specific research questions related to 

different aspects of driving behavior were considered by the research team. These research 

questions were divided into four distinctive research areas: 1) speed selection, 2) car-following 

behavior, 3) lane-keeping behavior, and 4) safety critical events. Using a variety of analytic 

modeling techniques, the research team evaluated each research area using a sample of the 

Wyoming SHRP2 NDS trips. Due to the unique nature of each research area, different trip 

samples were used for each individual analysis.  

One analytic strategy used in many of the research areas was introduced in chapter 2 and is 

related to the collection of adverse weather trips and matching clear trips. In order to identify 

distinct behavioral adjustments made during adverse weather events, the research team needed a 

baseline for comparison. Therefore, clear trips were collected alongside each adverse trip, 

matching the same driver traversing the same route. As part of Phase 2 data acquisition, two 

clear trips were collected for each adverse trip, and these matching trip sets are used in various 

ways in each research area. 

The following sections describe the analyses conducted for each specific element of driving 

behavior studied as part of the Wyoming Phase 2 IAP. Each area of research is prefaced with a 

brief literature review describing the specific work, an overview of the data preparation 

procedures required in addition to the initial data reduction, the analysis methodology, analytic 

results, and a summary of next steps for a continuation of the research. 

  



 

16 

 

Speed Selection in Rain and Snow 

Literature Review 

The impact of adverse weather conditions including rain and snow on driver speed selection has 

been investigated in a previous study (18). Weather and traffic data were collected from a 

freeway (Queen Elizabeth Way Mississauga) in Canada. They found a significant speed 

reduction during adverse weather conditions, including light and heavy rain, light snow, and 

snow storms. In addition, analysis of traffic operation parameters showed 1.24 to 1.86 mph (2 

and 3 kph) reduction in speed caused by light rain and light snow respectively. Moreover, 3.1 to 

6.2 mph (5-10 km/h and 38-50 km/h) speed reduction were observed in heavy rain and heavy 

snow, respectively.  

Stern et al. (2003) analyzed the negative impact of adverse weather on traffic flow using eighteen 

freeway segments and fifteen arterial roadway segments, in total representing 239 miles (384.633 

km) (19). Weather data were extracted from three airports in Washington DC, including Dulles 

International (IAD), Washington National (DCA) and Baltimore/Washington International 

(BWI). Travel time data were extracted from the “SmarTraveller”, a web-based service that 

provides information including travel time, crash locations, work zones, etc. Different weather 

conditions were considered including rain, snow, wind, visibility and surface conditions. Rain 

and snow were categorized into three levels including no rain/snow, light rain/snow, heavy rain 

and heavy snow/sleet. The wind was categorized into two levels including below 30 mph (48 

km) and above 30 mph (48 km). Visibility distance was classified into below 0.25 miles (0.4 km) 

and above 0.25 miles (0.4 km). Finally, the surface condition was categorized into four levels 

including dry, snowy, wet, and icy. Their results indicated an increase in travel time during 

adverse weather conditions. Specifically, an average of 11 and 13 percent increase in travel time 

during on-peak and off-peak periods were observed under precipitation conditions, respectively. 

A study by Hawkins (1988) investigated weather conditions impact on vehicle speed using the 

loop detector data (20).  Weather conditions were categorized into nine categories. Surface 

conditions and visibility were also considered. The findings showed 25-30 percent speed 

reduction within 328 feet visibility limit. The speed reduction was found to be higher in snow 

and slush, 18.6 and 24.9 mph (29.9 and 39.3 kph), respectively. In addition, 2.5 and 3.7 mph 

(4.02 and 5.95 kph) speed reduction were observed for light and heavy rain respectively.  

The impacts of adverse weather on traffic demand, traffic safety, and traffic flow were 

investigated in a previous study (21). It was found that both weather type and precipitation 

intensity play important roles in the abovementioned factors. More specifically, the analysis 

results showed less than 5 percent reduction in traffic volume during heavy rain and 5-80 percent 

during snowstorms. In addition, 13 percent and 25 percent increase in crash rate were observed 

during moderate snow and heavy snow respectively. They also found that more than 0.25 in/h 

(0.635 cm/h) rainfall and 0.5 in/h (1.27 cm/h) snowfall caused 14 and 22 percent reduction in 

capacity of freeways, respectively.   

Another study mentioned that free-flow speed on rural interstate freeways might be impacted by 

poor surface conditions, visibility, and severe wind speeds (22). They also mentioned that 
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adverse weather conditions should be taken into account in analyzing capacity and level-of-

service for a number of the U.S. cities that severe weather conditions occur frequent enough.  

Pisano and Goodwin, 2002 investigated the negative effects of different weather conditions on 

roadways and traffic operation parameters (23). Table 2 shows the impact of weather conditions 

on roadway environment and operations. 

Table 2 Weather Impacts on Roadway Environments (23) 

Weather 

Conditions 
Roadway Environment Impacts Transportation System Impacts 

Rain, Snow, Sleet, 

Hail & Flooding 

• Visibility Reduction  

• Reduction in Pavement friction  

• Lane obstruction  

• Lane submersion  

• Reduction in vehicle stability  

• Reduction in vehicle 

maneuverability  

• Increased chemical and abrasive use 

for snow and ice control  

• Infrastructure damage 

• Reduced roadway capacity  

• Reduced speeds & increased delay  

• Increased speed variability  

• Increased accident risk  

• Road/bridge restrictions & closures  

• Loss of communications/power services  

• Increased maintenance & operations costs 

High Winds 

• Visibility Reduction (blowing snow 

or dust)  

• Lane obstruction (drifting snow)  

• vehicle stability & maneuverability 

reduction (Large vehicle tip over) 

• Increased delay 

• Reduced traffic speeds  

• Road/bridge restrictions & closures 

Fog, Smog, Smoke 

& Glare 
• Visibility Reduction 

• Reduced speeds & increased delay  

• Increased speed variability  

• Increased accident risk 

• Road/bridge restrictions & closures 

Extreme 

Temperatures & 

Lightning 

• Increased wildfire risk  

• Infrastructure damage 

• Traffic control device failure  

• Loss of communications & power services  

• Increased maintenance & operations costs 

 

A previous study showed an inverse proportional relation between traffic demand and inclement 

weather conditions. In fact, they found that by increasing the severity of adverse weather 

conditions, the traffic demand decreases. Analyzing the traffic demand on snowy days revealed 

20 to 80 percent reduction in demand considering low and high wind respectively (24).  

The recently published 2016 Highway Capacity Manual (HCM) has discussed the impact of 

inclement weather conditions on traffic operation and has provided Weather Adjustment Factors 

(WAFs) based on (1) weather type and intensity and (2) facility free-flow speed (FFS). As an 

example, considering a freeway corridor with a 65 mph FFS, freeway capacity reductions are 

predicted to be 8 percent and 14 percent for medium rain and heavy rain, respectively (25). 

Selecting the right speed for the condition is considered as one of the most important driving 

tasks on high-speed facilities. In fact, one of the key factors to achieve an efficient Intelligent 

Transportation System (ITS) is collecting high-quality microscopic traffic data.  Vehicle speed is 

one of the main indicators to estimate traffic conditions on freeways. Speed data for this purpose 
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generally collected using inductive Loop Detectors (iLD) and Remote Traffic Microwave 

Sensors (RTMS) in the literature (26). However, utilizing in-vehicle (IV) data for speed 

prediction is becoming more common in recent years (27). 

In the early 80’s, VSL was introduced as a groundbreaking approach that could regulate traffic 

congestion problems. According to the Federal Highway Administration (FHWA), Connected 

Vehicle (CV), Variable Speed Limits (VSL), and Advanced Traveler Information Systems 

(ATIS) are considered the next step in tackling U.S. freeway congestion and safety problems. 

Hence, VSL systems have been widely implemented in the U.S. 

The main benefit of VSL is in its immediate response to real-time conditions including actual 

traffic conditions, weather conditions, and any other real-time circumstances. In fact, variable 

speed limit advantages can be classified into three main categories : (1) instantaneous 

intervention that can influence dynamics of the traffic in any abnormal conditions, (2) traffic 

management while avoiding diverting or restricting access for unrelated streams of traffic, and 

(3) speed harmonization that can reduce disturbances of individual driver behavior at 

microscopic and macroscopic levels as well as improve traffic performance and reduce 

congestion. 

Even though the most common applications of VSLs are incident management, and used mostly 

near temporary work-zone sites, static speed limits are still the most common way of notifying 

drivers about the maximum allocated speed on the road (28). In fact, there are technical and 

policy related challenges in the widespread adoption of VSL systems. The first challenge ahead 

of researchers is the absence of comprehensive strategies that are independent of specific 

infrastructure necessities and traffic scenarios. The second important restraining factor is the 

absence of a comprehensive approach that can connect the VSLs to other existing control 

systems to gain the maximum efficiency and performance. For instance, the independent design 

of traffic control systems such as ramp metering and VSL might introduce issues when 

deploying them simultaneously, since they are not coordinated (28). Finally, the most important 

factor that received less attention in previous studies is considering driver behavior in VSL 

scenarios. More specifically, current VSLs are mostly designed to consider weather or traffic 

conditions. However, driver behavior such as speed selection according to the condition and 

compliance to traffic control devices could play an important role in determining appropriate 

speed for VSL based on real-time driver performance on roadways. 

The negative impacts of inclement weather conditions on traffic flow have been investigated in 

many studies; however, there is a lack of studies that have examined the underlying complexity 

of driver speed selection behavior during adverse weather conditions using trajectory-level data. 

Therefore, this study utilized NDS trajectory-level weather-related data to provide a better 

understanding of driver speed selection behavior in adverse weather conditions, which can be 

used to provide more realistic VSLs.  Chapter 3 and 4 provided detailed information about the 

developed speed selection models and discussed the potential countermeasures.  

Data Preparation 

In this study, a total of 212 trips in adverse weather conditions (22 trips in fog; 102 trips in rain; 

and 88 trips in snow – plus 424 matching clear weather trips) were randomly selected from the 
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extensive Wyoming NDS database. The selected NDS trips involve 145 drivers between 16 and 

89 years old, with the majority of the drivers in the young age group (16 to 29 years old). Gender 

was mainly balanced among age groups, except for a slight overrepresentation of female drivers 

between 20 and 24, which follows the same distribution that is reported by VTTI for all SHRP2 

NDS trips. 

A total of 14,923 one-minute segments – equivalent to nearly 249 hours and 11,466 miles 

(18,453 km) equivalent to: Rain: 2,225.7 miles (3,582 km), Snow: 1,003 miles (1,615 km), and 

Fog: 592.79 miles (954 km) of driving, plus their matching trips in clear weather conditions – 

were processed. The speed limit data provided in the RID was used to merge speed limits with 

each one-minute segment. Once non-freeway segments were removed, 10,606 one-minute 

segments were used to model driver speed selection.  

Methodology 

In order to identify the impact of weather conditions on driver speed selection, two models using 

both parametric and non-parametric methods were developed. Parametric models, such as probit 

and logistic regression models, provide the relationship between a response variable and 

predictors. However, parametric models have some limitations. More specifically, they cannot 

provide a high level of prediction accuracy because there are many embedded assumptions (29). 

Another complication in using parametric models are their inability to automatically handle 

missing values (30). These shortcomings cannot be addressed using common parametric models 

such as logistic and probit models (29, 31). Despite their limitations, parametric logistic/probit 

models are effective in interpreting the marginal effects of various risk factors (32, 33). On the 

other hand, there are several key advantages of using non-parametric models, including the 

ability of providing high prediction accuracy, handling of missing values automatically, and their 

capability of handling large number of explanatory variables in a timely manner, which might be 

extremely beneficial specifically for assessing traffic operation and safety in real-time 

considering weather and traffic data to be directly fed into the model (30).  However, the trade-

off is that their classification results cannot be explicitly interpreted (29).  

In this study both ordinal logistic regression (parametric) and classification and regression tree 

(non-parametric) methods are used for analyzing the impact of different contributing factors 

(focusing on weather and roadway conditions) on driver speed selection.  

 

Ordinal Logistic Regression (OLR) 

Logistic regression is a commonly used model in traffic safety and operation studies. Logistic 

regression allows the formulation of predictive models on a probabilistic basis. Similar to other 

regression analyses, it predicts the value of a dependent variable from one or more explanatory 

variable(s). Logistic regression can be applied to a binary, nominal, or ordinal dependent 

variable. Logistic regression (Equation 1) can also be utilized to rank the relative importance of 

the response variables (34).  

( )
[ ( )] log( )

1 ( )

P x
Logit P x x

P x
   


            Equation 1 
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Equation 1 shows a logistic regression model with x representing the independent variable, and 

P(x) indicating the probability of success for a binary response variable y, considering 

explanatory variable x.   represents the response probability when explanatory variables are at 

the reference level (or when x=0) ;   represents the regression coefficients. As mentioned 

earlier, logistic regression can be conducted using an ordinal response variable. The ordinal 

logistic regression equation is shown in Equation 2. 

      

1 1 2 2 3 3( ) ( ...)j jLn x x x                       Equation 2 

 

An ordinal logic regression (ordered logit) model was applied for this analysis due to the ordinal 

nature of speed selection that would not be accounted for in multinomial analyses. 

Classification and Regression Tree Model (CART) 

Decision tree modeling can be used for both continuous and nominal dependent variables. 

Utilizing a decision tree to classify a nominal dependent variable is called a classification tree 

(35, 36). Classification can be defined as a procedure for predicting the “class” of an object – 

considering the object’s features (37). Classification models are built from a training dataset in 

which trends of explanatory and response variables are identified and used to predict the value of 

the target variable for different datasets (38). The two main components of decision trees are the 

“root node” and the “leaf node”. The “root node” is the node located at the top of the tree, which 

contains all ingested data and the “leaf node” refers to the termination node, which has the 

lowest impurity.  

The root node is divided into two child nodes, based on the independent variable (splitter) that 

creates the best homogeneity. This procedure of partitioning the target variable recursively is 

repeated until all of the data in each node reach their highest homogeneity. At that point, tree 

growth stops, and the node(s) that do not have any branches become the “leaf node(s)”. Each 

path from the top of the tree (root node) to the bottom/termination of the tree (leaf node) can be 

considered a rule. Following this sequence, the data in each child node is purer (more 

homogenous) than the data in the upper parent node (39). 

In order to identify possible splits among all variables, a splitting criterion is generated. The 

splitting criterion is the main design component of a decision tree (40). In a decision-tree 

learning algorithm, the splitting criterion’s role is to measure the quality of each possible split 

among all variables. Two common tests used to generate splitting criteria are: 1) chi-square and 

2) Gini reduction. The Gini splitting criterion is used to select the variable and split pattern to 

best partition the node. Gini impurity indicates the data purity; in other words, it shows the 

probability of incorrect classification for a randomly chosen record from the specific node in the 

data subset. 

Variable Importance Measure (VIM) is one of the main outputs of the classification tree model, 

showing the most important factors affecting target variable (41). In this section, most significant 

factors affecting driver speed selection considering adverse weather conditions were identified 

using the VIM.  
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Analysis 

Preliminary Analysis 

Table 3 indicates that speed reduction is more likely to occur in adverse weather (snow, rain, 

fog) conditions in comparison with the matched trips in clear weather conditions. The odds ratios 

of driving below the speed limit, were 7, 2.7, and 2 times more likely to be in snow, rain, and 

fog, respectively, than their matching trips in clear weather conditions. 

 

Table 3 Odds Ratios for Speed Behavior in Snow, Rain, and Fog 

 
Driving below 

Speed Limit 

Driving above 

Speed Limit 

Odds 

Ratio 

Confidence 

Interval 

Significance 

level 

Snow 773 441 6.93 5.89 to 8.14 P < 0.0001 

Matched Clear of Snow 386 1525    

Rain 220 251 2.67 2.13 to 3.35 P < 0.0001 

Matched Clear of Rain 268 816    

Fog 91 191 2.1 1.53 to 2.89 P < 0.0001 

Matched Clear of Fog 119 531    

 

Additional analyses were conducted to compare speed reduction in each NDS state during free 

flow speed conditions. Findings indicate that the speed reduction was not similar in each state. 

For instance, in New York one-minute segments in snow had a speed reduction of about 18 

percent being the highest among all NDS states. Important sample size considerations note that 

74 percent of the identified snow segments were from New York. Whereas in Pennsylvania with 

only 7 percent of snow-related segments, the speed reduction was about 9 percent being the 

lowest. In addition, in rainy weather conditions, trips in Indiana had the highest speed reduction 

of about 33 percent. Among the considered segments in rain, 1 percent was travelled in Indiana 

while Washington had 44 percent with the lowest speed reduction of about 3 percent. In fog, the 

highest speed reduction was 6 percent in Florida with 37 percent of fog-related trips and the 

lowest speed reduction was in Washington with 14 percent of fog-related segments, where the 

NDS drivers reduced their speed by nearly 2 percent. These differences are certainly a function 

of the distribution and sample size of snow, rain, and fog events in each state; nonetheless, the 

finding indicates that driving behavior in adverse weather conditions must be calibrated based on 

local driver populations and their familiarity with the weather condition. 
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Figure 8 Observed and Fitted Distributions for Speeds during Adverse and Clear Weather 

under Free-Flow Traffic (42) 

 

Direct comparisons between clear weather in free flow speed and driving in adverse weather/ 

traffic conditions are imperative to identify critical traffic and environmental conditions. GIS was 

used to illustrate driver speed behavior under various weather conditions.  
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Figure 9 Illustration of a Trip in Fog and Whiteout Condition (I-290 New York) 

Figure 9 illustrate a significant speed reduction due to whiteout condition on a traversed route in 

New York, using data from a sample trip and a matching trip. The average speed during the 

whiteout condition was about 22 mph (35 kph) less than the matched trip in clear weather 

conditions. 

 Figure 10 represents the driver performance on roadways considering the risk of crashes. Two 

heat-maps representing crash-prone zones using the three years of crashes (2011-2013) on I-190 

and I-290 were developed. Speed reduction percentages along the travelled routes are shown in a 

range of colors from green (low crash rate) to red (high crash rate). In addition, a separate color 

scale along the interstate route represents the speed reduction (compared to the posted speed 

limit) realized for the trip in whiteout conditions and the matching clear. These maps indicate 

speed reduction was much greater in whiteout conditions compared to the matched clear weather 

conditions. The potential benefit of visualizing continuous driver performance data (here speed 

reduction percentage) and crash-prone locations heat-map is in VSL/VMS application. This 

information can be utilized in updating VSL/VMS in real-time. More clearly, using this 

representing GIS maps can highlight not only the crash hotspots but also the possible driver role 

in crash occurrence. This work will be expanded using more NDS drivers in different weather 

conditions. In addition, the same concept could be implemented on Phase 3 I-80 VSL corridor.  
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Figure 10 Speed behavior-GIS Representation (43) 

Direct comparisons between clear weather in free flow speed and driving in adverse weather/ 

traffic conditions are imperative to identify critical traffic and environmental conditions. GIS 

was used to illustrate driver speed behavior under various weather conditions. Figure 10 illustrate 

a significant speed reduction due to whiteout condition on a traversed route in New York, using 

data from a sample trip and a matching trip. The average speed during the whiteout condition 

was about 22 mph (35 kph) less than the matched trip in clear weather conditions. Figure 11 

shows the drivers’ speed and lane keeping behavior in both the clear and whiteout conditions, 

indicating lower travel speeds and difficulty  in maintaining his/her lane in whiteout condition.  

 

Figure 11 Time-Series Speed and Lane keeping Performance in Clear and Whiteout- 

Snowy Surface Condition(43) 
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Modeling Speed Selection: Ordered Logit Model 

The ordered logit model was calibrated using all available data at the time of the preliminary 

report; representing a dataset of 10,606 one-minute segments of drivers’ speed selections 

occurring in various weather and traffic conditions (matching is not required). The model was 

developed for four speed intervals based on the median of the Percent Speed Reduction  above or 

below the speed limit (
(𝑆𝑝𝑒𝑒𝑑−𝑆𝑝𝑒𝑒𝑑 𝐿𝑖𝑚𝑖𝑡)

 𝑆𝑝𝑒𝑒𝑑 𝐿𝑖𝑚𝑖𝑡
) (42). The four-quantile intervals were defined as: 1) 

more than 14 percent Speed reduction percentage, 2) Speed reduction percentage between 0 to 

14 percent, 3) 0-10 percent increase in speed, and 4) more than 10 percent increase in speed. 

These intervals were used to achieve a sufficient sample size in each category of speed reduction. 

The remaining variables are exploratory variables, consisting of information extracted from 

questionnaires including driver demographics (age, marital status, gender, education) and driver 

experience, roadway factors, and observed environmental and traffic conditions.   

To confirm the suitability and fitness of the model, the Log Likelihood Ratio (LR) was used. 

Table 4 shows the results of the model. The Multi-collinearity was assessed by calculating the 

Variance Inflation Factor (VIF) for each predictor, which indicates how much the variance of an 

estimated regression coefficient increases if the predictors are correlated. A VIF between 5 and 

10 shows high correlation between predictors and VIF greater than 10 indicates that the 

regression coefficients are poorly estimated due to multi-collinearity (44). The explanatory 

variables introduced to the model produced VIF values between 1.03 and 1.40, excluding any 

concerning multi-collinearity. Only statistically significant variables were retained in the final 

models. 
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Table 4 Estimation of Ordered Logit Model for Speed Selection in Different Weather 

Conditions(42) 

Analysis of Maximum Likelihood Estimates 

Parameter  DF Estimate 
Standard Wald 

Pr > ChiSq 
Odds 

Ratio 

Confidence 

Interval Error Chi-Square 

Intercept 4 1 -2.57 0.09 800.41 <.0001 - - - 

Intercept 3 1 -1.3 0.09 218.23 <.0001 - - - 

Intercept 2 1 0.32 0.09 13.93 0.0002 - - - 

Weather 

Cond. 
Rain 1 0.44 0.09 25.35 <.0001 1.55 1.31 1.83 

Weather 

Cond. 
Snow 1 2.23 0.06 1612.52 <.0001 9.29 8.33 10.36 

Weather 

Cond. 
Fog 1  0.26 0.09 7.61 0.0058 1.29 1.08 1.55 

Visibility Affected 1 0.56 0.09 35.24 <.0001 1.75 1.45 2.1 

Traffic Cond. C-F 1 1.28 0.04 995.02 <.0001 3.6 3.32 3.89 

Gender Female 1 0.09 0.04 5 0.0254 1.09 1.01 1.18 

Age >40 1 0.2 0.05 18.24 <.0001 1.23 1.12 1.35 

Marital Status Divorced 1 0.81 0.09 86.57 <.0001 2.25 1.9 2.67 

Marital Status Widow(er) 1 1.2 0.11 121.33 <.0001 3.31 2.68 4.1 

Marital Status Unmrid-partnrs 1 -0.94 0.1 88.74 <.0001 0.39 0.32 0.48 

Marital Status Married 1 0.34 0.05 45.09 <.0001 1.4 1.27 1.55 

Mileage Last 

Year 
10,000 to 20,000 1 -0.5 0.05 122.3 <.0001 0.61 0.56 0.66 

Mileage Last 

Year 
>20,000 1 -0.58 0.06 92.33 <.0001 0.56 0.5 0.63 

 

Adverse weather conditions – snow, rain, and fog – were found to have a significant effect on 

speed selection. Results showed that the odds of a driver reducing their speed were 9.29, 1.55, 

and 1.29 times higher for drivers travelling in snow, rain, and fog conditions, respectively, in 

comparison with drivers who were driving in clear weather conditions. Findings related to 

visibility indicated that the odds of a driver reducing their speed were 1.75 times greater for 

drivers who were driving in affected visibility conditions versus those driving in good visibility 

conditions. As expected, traffic conditions indicated a significant negative effect in speed 

selection. More clearly, the odds of having more speed reduction percentage were 3.6 times 

greater for drivers who were driving in higher traffic density compared to free flow speed (level 

of service A and B). Considering drivers’ gender, findings indicated that the odds of a female 

driver reducing her speeds greater than male drivers was 1.09.  

Modeling Speed Selection: Classification Tree Model 

Classification can be defined as a procedure for predicting the class of an object – considering 

the object’s features (37). Classification models are built from a training dataset in which trends 

of predictor and target variables are identified and used to predict the value of the target variable 

for a new datasets (38).  
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Figure 12 shows the decision tree diagram for the drivers’ speed selection in different weather 

conditions based on the training data described in the previous section. In the node boxes, the 

node number and the percentage of data in each category are provided.  

One beneficial characteristic of a decision tree, compared to other modeling methods, is that it 

gives decision makers rules to address ‘‘if-then’’ questions efficiently. The dataset introduced to 

this model included 10,606 one-minute segments with time-series vehicle data, weather 

conditions, driver demographics, and roadway characteristics data. The dataset contains four 

categories of drivers’ speed selection behavior as mentioned before. Of the 10,606 one-minute 

segments, 60 percent were considered for training dataset, 20 percent were considered for 

validation, and the remaining 20 percent were used to test the model. 

The misclassification rate, based on the training and validation datasets, indicated that the best 

tree could be obtained with 15 terminal nodes. More clearly, with 15 terminal nodes, the 

misclassification rate for the model reaches a minimum value of 0.42 and remains fairly steady. 

Node 3, on the right side, shows the data related to driving in snowy conditions. On the right 

branch of the tree, there are four terminal nodes (nodes 7, 13, 24, and 25). In three of these 

terminal nodes, the drivers were predicted to reduce their speed more than 14 percent (Class 

Label 1), which implies that, if a driver is travelling in snowy conditions, he/she will more likely 

reduce their speed, regardless of any other variables. 
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Figure 12 Classification tree diagram for Speed Selection Model(42) 
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As a function of traffic conditions, node 3 is split into node 6 and terminal node 7; terminal node 

7 shows that when a driver travels in any level of traffic congestions (not a free flow speed) 

during snow covered road surface conditions, there is an 86 percent probability that the driver 

will reduces their speed more than 14 percent. Node 6 is further split into node 12 and terminal 

node 13 based on visibility conditions. Node 13 shows that drivers are 56 percent likely to 

reduce their speed more than 14 percent in snowy surface conditions, free flow traffic, and 

reduced visibility.  Node 12 is split into node 24 and 25, based on driver mileage last year. 

Lastly, node 24 shows that if a driver, drove less than 20,000 miles last year, they were 59 

percent more likely to reduce their speed more than 14 percent. 

Summary & Next Steps 

Both parametric logistic regression and non-parametric classification tree models were 

developed to better understand driver speed selection in different weather conditions, i.e., snow, 

rain, and fog. Each modeling technique has its advantages and disadvantages. While, the 

classification tree model can easily explain the complex interactions between several explanatory 

variables, it is difficult to fully describe the complicated effects of contributing factors due to 

non-linearity and the interaction effects in the logistic regression. On the other hand, using 

parametric logistic regression is beneficial in interpreting the marginal effect of risk factors. 

Therefore, it is justified to use both models to take the advantage of the benefits and compensate 

for the shortcomings of each method. Combined, the use of these parametric and non-parametric 

speed selection models provide a deeper understanding of speed selection behavior in adverse 

weather conditions. The focus of this analysis was not to show one model is superior to the other 

one, but it attempts to show how the two proposed complementary parametric and non-

parametric approaches can help researchers provide better insights into the factors, which may 

affect drivers speed selection in adverse weather conditions.   

The speed selection models revealed that among various adverse weather conditions, drivers are 

more likely to reduce their speed in snowy weather conditions. Specifically, the odds of drivers 

reducing their speed were 9.29 times higher in snowy weather conditions, followed by rain and 

fog with 1.55 and 1.29 times, respectively (compared to clear conditions). In addition, variable 

importance analysis using the classification tree method revealed that weather conditions, traffic 

conditions, and the posted-speed-limit are the three most important variables affecting driver 

speed selection behavior.  

Selecting the appropriate driving speed for prevailing conditions is considered one of the most 

important driving tasks on high-speed facilities. Due to the previously limited understanding of 

the interaction between driver behavior/performance and weather conditions, the continuation of 

this research aims to establish a Connected Human-in-the-Loop VSL system, which is aligned 

with the SHRP2 Task Force’s focus areas. An important component of the driver-weather 

interaction is the characterization of traffic flow because heterogeneity in driver behavior exists 

between adverse weather conditions and traffic flow conditions, meaning that driving behavior is 

different for different levels of congestion and weather conditions. Modeling variation in driver 

behavior with adverse weather conditions and traffic flow states is crucial to assigning effective 

VSLs, as these algorithms must consider the impact of both weather and traffic conditions when 

suggesting the safest and most efficient speed. An additional benefit from these developed 

models may be introduced in Connected Vehicle (CV) applications, where the VSL system could 
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be expanded to incorporate mobile vehicle data as an input and to export VSL data to on-board 

units (OBU). The OBUs could then provide speed advisories, regulatory speeds, or other related 

advisories to the driver. Messages such as, “turn off cruise control”, could be sent in real-time to 

more effectively regulate driving speed and preserve a safe flow of traffic. If unusual traffic 

patterns are detected or inclement weather events are forecasted or experienced, these geospatial 

locations could be flagged for implementation of an appropriate and timely mitigation strategy to 

reduce the impact of the adverse weather condition. 

Speed Selection in Fog 

The negative effect of reduced visibility on driver performance has been recognized as one of the 

main causes of motor vehicle crashes in fog. Although many studies have concentrated on driver 

behavior during foggy weather in a simulated environment, there is a lack of studies that have 

addressed the impact of fog on driver behavior and performance in naturalistic settings. 

Literature Review 

According to the Federal Highway Administration (FHWA), roughly 15 percent of fatal crashes, 

19 percent of injury crashes, and 23 percent of Property-Damage-Only (PDO) crashes occur in 

the presence of adverse weather, which results in approximately 5,100 fatal crashes, 304,800 

injury crashes and 922,200 PDO crashes every year (45). Many studies have explored the impact 

of adverse weather on crashes and found that crash rate increases during inclement weather.  

Driving in foggy weather is challenging due to reduced visibility, limited contrast, and distorted 

perception, which causes many accidents every year. From a visual perspective, fog can be 

described as a reduction in contrast in the visual field (46). In fog, drivers face difficulty in 

perceiving speed, headway as well as road signs and markings, which are crucial for safe driving. 

Fog-related crashes tend to involve multiple vehicles and usually have more fatalities compared 

to crashes under clear weather conditions (47). A previous study showed that foggy conditions 

may increase crashes specifically in lack of road lighting (48). Moore and Copper found that 

drivers usually considered the leading vehicle as a mean of guidance and drove at a speed similar 

to the leading vehicle while driving in foggy weather. They stated this tendency to be the main 

cause of rear-end crashes in foggy weather (49).  

Yan et al. investigated the effect of foggy weather conditions on driver speed control at different 

risk levels and found that at the high-risk level, driver speed compensation due to fog did not 

reduce their crash-involvement risk, though it effectively lowered the crash severity (50). A 

study conducted in a driving simulator environment investigated driver speed perception in 

foggy weather conditions. They found that drivers perceived their speed slower than the actual 

speed in foggy weather conditions (50).  However, a number of studies using more sophisticated 

driving simulators contradict these results.  For instance, Owens et al. showed that drivers tended 

to overestimate their speed and drove at a speed lower than instructed (51). In another study, 

based on 566 surveyed drivers in Florida, Hassan et al. concluded that drivers usually take 

shorter headways from lead vehicles during limited visibility conditions due to near fog. The 

study also mentioned that the VSL signs during fog cannot reflect the accurate safe speed limit 

due to the frequent fluctuation of fog thickness (52). 

As mentioned in the previous section, the majority of the studies were mainly performed in a 

simulated environment or utilizing survey questionnaires (50, 52–54). 
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There is a lack of studies that have examined the impact of fog on driver behavior and 

performance under naturalistic settings. The data used in this study was collected from the 

Second Strategic Highway Research Program (SHRP2) Naturalistic Driving Study (NDS), which 

is the largest study on naturalistic driving behavior to date in the US. In addition, Roadway 

Information Database (RID) was also utilized. The RID was developed mainly to link roadway 

information to the NDS database. 

This section will help in gaining insights into driver dynamics of adapting speed. It will also 

provide valuable information about how drivers interact with roadway and foggy weather 

conditions, which can be used for effective countermeasures. 

The overall objective of this study is to assess driver behavior and performance during clear and 

fog weather conditions by utilizing the NDS and RID database. This will be attained by 

developing an appropriate NDS and RID data acquisition technique, then conducting a 

preliminary analysis between clear and foggy weather conditions, and finally developing a speed 

selection model to identify the major contributing factors that might influence driver speed 

selection under foggy weather conditions.  

Data Preparation 

A total of 124 trips in fog and 248 matched trips in clear weather conditions have been fully 

processed using the described data reduction procedure, which resulted in a total of 7,147 one-

minute segments (2,549 in fog, 4,598 in clear weather). As mentioned earlier, this section is 

trying to provide better insights into driver speed selection under foggy weather conditions, 

which can lead to provide more realistic speed limits for the VSLs on freeways. Therefore, data 

were requested for freeways only. However, preliminary analysis showed that some trips have 

some non-freeway segments at the beginning and at the end of the trips (entering and exiting 

freeways). Therefore, non-freeway segments were removed from the start and end of these trips. 

Once the non-freeway segments were removed, the number of one-minute segments was reduced 

to 5,587 (i.e., 1,912 in fog and 3,675 in clear weather). A total of 62 drivers between 16 to 79 

years of age participated in the selected NDS trips with more than 80 percent of drivers aged 

below 34 years. The quantity of male and female drivers were almost equal with a marginally 

higher percentage (56 percent) of male drivers. 

Classification of fog 

It is worth mentioning that the classification of fog is not consistent in the literature. The 

National Oceanic and Atmospheric Administration (NOAA) classified fog into two categories 

back in 1949 (55). They classified fog as near if the visibility distance falls below 0.25 mile and 

light if the visibility distance is between 0.3 mile to 6 miles (0.48 to 9.7 km). In 1992, South 

Carolina Department of Transportation (SCDOT) developed a low visibility warning system, 

where they defined fog as dense if the visibility falls below 300 ft. (91 meters) and light if the 

visibility ranges between 300 ft. to 900 ft.(91 to 274 meters) (56). Another visibility warning 

system in Utah used a threshold of 200 ft. (61 meters) to define dense fog (57).  

However, for this study, we classified fog into two categories including near fog and distant fog, 

using qualitative-based measures extracted from the NDS videos. Fog was classified based on 

the visibility of road markings, readability of road signs, roadside surroundings (delineators, 
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guardrail, New Jersey barriers, etc.)  and the horizon. The fog was reported as near fog if the 

video observers:    

 Can only see few road markings in front of the NDS vehicle. 

 Cannot read the information on the road signs. 

 Cannot see the roadside surroundings and traffic ahead clearly.  

 Cannot see the horizon.  

On the other hand, the fog was classified as a distant fog if the video observers:  

 Can see the road markings and read the information on the road signs. 

 Can see the roadside surroundings and traffic ahead. 

 Cannot see the horizon. 

It is worth mentioning that video observers were trained comprehensively and provided with 

sample pictures of near fog and distant fog to minimize subjectivity. Figures below show some 

sample pictures of near fog and distant fog.  

 

Figure 13 Near Fog: a) Only one road marking is visible, the sign is unreadable, 

surroundings and the horizon cannot be seen properly. b) Few road markings are visible, 

surroundings, traffic, and the horizon cannot be seen clearly. 
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Figure 14 Distant Fog: a) Road markings are visible, signs are readable, surroundings and 

traffic can be seen properly to some extent, the horizon cannot be seen clearly. b) Road 

markings are visible, the speed limit sign is readable, surroundings and traffic can be seen, 

horizon cannot be seen clearly. 

Methodology 

To better understand the factors affecting driver speed selection in different weather conditions 

an ordered logit model was developed. The model was calibrated utilizing a dataset of 5,587 one-

minute segments occurring in various weather and traffic conditions. A Logit model has various 

advantages over other models. For instance, predictors in the logit model can be continuous, 

categorical, or a mixture of both. In addition, independent variables do not have to be normally 

distributed or have equal variance in each group (58). Table 5 shows the summary of different 

variables used in the speed selection model. The response variable of the model is speed 

selection, which is classified into four levels, based on the median Percent Speed Reduction 

above or below the speed limit 
(𝑆𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡−𝑠𝑝𝑒𝑒𝑑)

𝑆𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡
. The four-quartile intervals were defined as: 1) 

More than 10 percent increase in speed, 2) 0-10 percent increase in speed, 3) 0-28 percent 

reduction in speed, and 4) more than 28 percent reduction in speed. These intervals were selected 

based on quartile values in order to ensure sufficient sample size in each category. The remaining 

variables are explanatory variables including environmental variables, traffic conditions, driver 

demographics and roadway factors.  
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Table 5 Data Descriptions for Speed Selection Model (59) 

Variable Description Type Levels 

Response Variable 

Speed Selection 
Percent speed reduction above or 

below the speed limit 
Ordinal 

1 = More than 10 percent increase in speed 

2 = 0-10 percent increase in speed 

3 = 0-28 percent reduction in speed  

4 = More than 28 percent reduction in 

speed 

Explanatory Variables 

Environmental Variables 

Weather Conditions 
Predominant weather conditions 

in 1-min video observation  
Categorical 

1 = Clear 

2 = Distant fog 

3 = Near Fog 

Visibility 
Predominant visibility conditions 

in 1-min video observation  
Categorical 

1 = Not Affected 

2 = Affected 

Surface Conditions 
Predominant surface conditions 

in 1-min video observation  
Binary 

1 = Dry 

2 = Wet 

Traffic Variables 

Traffic Condition 
Predominant traffic conditions in 

1-min video observation  
Binary 

1 = Free Flow 

2 = Mixed Flow 

Speed Limit 
Predominant speed limit 

conditions in 1-min segment  
Categorical 

1 =<55 

2 = 55-60 

3 = 65-70 

Driver Demographics 

Gender The gender the participant  Binary 
1 = Male 

2 = Female 

Age 
The age group corresponding to 

the driver’s birthdate 
Categorical 

1 = Less than 40 years 

2 = Greater than 40 years 

Education 
The highest completed level of 

education of the participant 
Categorical 

1 = High school diploma or G.E.D. 

2 = Some education beyond high school 

but no degree and College degree 

3 = Some graduate or professional school, 

but no advanced degree and Advanced 

degree (e.g., J.D.S., M.S. or Ph.D.) 

Marital Status 

 
The participant's marital status Categorical 

1 = Single 

2 = Married 

3 = Other (Divorced, Widow, Unmarried 

Partners) 

Driver Mileage Last Year  
 

The approximate number of miles 

the participant drove last year 
Categorical 

1 = Less than 10,000 miles 

2 = Between 10,000 to 20,000 miles 

3 = Greater than 20,000 miles 

Driving Experience 
Number of years driving 

experience 
Categorical 

1 = Less than 10 years 

2 = Greater than 10 years 

Roadway Factors 

Bridge Presence of bridge 
Binary 1 = No bridge 

 2 = On bridge 

Curve Presence of curve   Binary 
1 = No curve 

2 = On curve 

Superelevation 
Average superelevation of the 

road in 1-min segment 
Continuous - 

Curve Length  
Average length of curve of the 

road in 1-min segment 
Continuous - 
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Analysis 

Preliminary Analysis: Summary Statistics 

Traffic conditions were categorized into free-flow (Level of service A and B) and mixed traffic 

condition (Level of service C to F). According to Highway Capacity Manual (HCM), free-flow is 

defined as low volume roadway conditions, where drivers are free to drive at desired speed and 

not constrained by the presence of other vehicles (25). In this study, a trip was considered as a 

free-flow speed when the NDS driver has no leading traffic in any lanes or when a leading 

vehicle is present at least in one lane, but the NDS driver is still not affected by other vehicles. 

Other conditions where NDS drivers were affected by other vehicles were considered as mixed 

traffic conditions.  

Each trip in fog was matched with two trips in clear weather considering the same driver, same 

vehicle, and same location. Matched trips were requested from the VTTI. As mentioned in a 

previous study, weather conditions may not be consistent within a trip (15). Therefore, 

considering the possible variations in weather conditions, exact match of the one-minute 

segments in fog and clear weather was conducted by importing the longitude and latitude of the 

trips and eliminating non-matching segments in the ArcGIS software. 

Removing the non-matching segments resulted in 5,398 one-minute matching segments (1,867 in 

fog, 3,531 in clear weather), which was equivalent to nearly 90 hours of driving time and 5179 

miles (8335 kilometers) of travelled routes. The summary statistics of these 5,398 one-minute 

segments are provided in Table 6.  

Table 6 Summary Statistics of NDS Trips Considered in this Section (59) 

 Weather Condition Near Fog 
Matched 

Clear 
Distant Fog 

Matched 

Clear 
Total 

Free-Flow 

Condition 

LOS A & B 

Number of One-minute 

Segments 
241 539 717 1467 2964 

Total Duration (Hour) 4.02 8.98 11.95 24.45 49.40 

Total Length (km) 418.59 973.72 1260.29 2637.26 5289.86 

Congested 

Traffic 

Condition 

LOS C to F 

Number of One-minute 

Segments 
271 405 638 1120 2434 

Total Duration (Hour) 4.52 6.75 10.63 18.67 40.57 

Total Length (km) 340.35 542.85 750.54 1411.11 3044.85 

Total Number of One-minute Segments 512 944 1355 2587 5398 

Total Duration (Hour) 8.53 15.73 22.58 43.12 89.97 

Total Length (km) 758.94 1516.57 2010.83 4048.37 8334.71 

 

 

 



 

36 

 

Speed Distribution 

This study investigated the distribution of speeds between clear and foggy weather conditions in 

various traffic states. From the NDS sample data, it was concluded that the speeds have a 

Weibull distribution in near fog under free-flow conditions while the speeds were normally 

distributed in clear weather for the matching dataset. A similar trend was also found for distant 

fog as shown in Figure 15. Speed in free-flow conditions is important for VSL application since 

speed selection here is not affected by the interaction with traffic (60). Other speed distributions 

for other scenarios were also examined. Speed distribution during near fog in mixed traffic 

conditions did not fit a specific distribution. However, speeds during distant fog as well as their 

matched clear weather conditions in mixed traffic fitted a bimodal distribution, which is common 

during congestion on freeways (61). Figure 15 shows the speed distribution for trips in near fog, 

distant fog and matched trips in clear weather under free-flow and congested (i.e., mixed/near 

traffic) traffic conditions.  

Descriptive Analysis 

Driver speed behavior including selection of speeds and accelerations under free-flow conditions 

were investigated in clear and foggy weather in order to have a better understanding of driver 

behavior in different weather conditions. Various statistical tests, including t-test, F-test, and Z-

test were used to compare driver behavior between foggy and clear weather as shown in Table 7. 

A t-test indicated that the average speed in near fog, as well as in distant fog, was significantly 

lower than in clear conditions under free-flow traffic. However, speed reduction was more in 

near fog compared to distant fog. Speed in near fog and distant fog was found to be 6.8 mph (11 

kph) (10 percent reduction) and 1.8 mph (3 kph) (2.8 percent reduction) lower than the speeds in 

their matching clear weather conditions, respectively. Previous studies have also concluded 

similar results of speed reduction. For instance, Liang et al. found 3.6-6.2 mph (6 to 10 kph) 

speed reduction due to the poor visibility caused by fog (62). It was also found that speeds had a 

higher variability during distant fog compared to clear weather under free-flow traffic, which 

could be an indication of increased safety risk (30, 63). However, an opposite trend was found 

for near fog where speeds in clear weather conditions had more variability. 

In addition, the acceleration/deceleration variability was also examined, and ± 0.3g 

acceleration/deceleration rates were set as a threshold to identify aggressive braking/acceleration 

events (64). However, no acceleration and deceleration were found to be higher or lower than ± 

0.3g, indicating the occurrence of zero aggressive events as shown in Table 7. 
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Figure 15 Observed and Fitted Distributions for Speeds during Fog and Clear Weather 

under Free-Flow and Mixed Traffic Conditions (59) 
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Table 7 Descriptive Statistics for NDS Instrumented Vehicles in Fog (59) 

 

Speed Selection 

Speed above the speed limit in fog and respective matching trips in clear weather were examined 

to determine driver compliance to the speed limit in different weather conditions. It was found 

that NDS drivers drove consistently above the speed limit in all conditions including near fog. 

For instance, NDS drivers drove with a speed 1.6 percent above the speed limit in near fog; 

whereas in clear weather NDS drivers drove with a speed 8.4 percent above the speed limit. 

Similar results were also found for distant fog. A Z-test as shown in Table 7Table 8 indicates that 

the violation of speed greater than 6.2 mph (10 kph) was significantly lower in near fog 

compared to matching trips in clear weather. However, no significant difference was found 

between the violation of speed greater than 6.2 mph (10 kph) in distant fog and corresponding 

matched clear trips, indicating no effect of distant fog on speeding behavior.  

According to Table 8 the majority of the drivers drove with a speed above the limit. For instance, 

speeds of about 66 percent of the trips in near fog and almost 83 percent of the trips in matching 

 

 

 

Statistical 

Test 

Free-Flow Traffic 

Near Fog Matched Clear Distant fog Matched Clear 

Speed 

(km/hr) 

% Speed 

Difference 

from Speed 

Limit 

Speed 

(km/hr) 

% Speed 

Difference 

from Speed 

Limit 

Speed 

(km/hr) 

% Speed 

Difference 

from Speed 

Limit 

Speed 

(km/hr) 

% Speed 

Difference 

from Speed 

Limit 

S
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e
e
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m
/h

r
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Average  98.944 -1.556 109.944 -8.420 105.739 -4.213 108.722 -7.803 

SD 10.436 10.141 11.785 9.831 11.087 10.070 10.511 8.558 

Min.  49.957 -21.360 75.877 -42.627 64.707 -33.525 77.660 -42.104 

Max. 113.995 43.548 137.942 27.530 125.832 33.385 133.097 26.683 

Median  100.313 -2.754 110.195 -8.100 107.018 -5.005 108.887 -7.847 

t-test 

Average speed is significantly higher in clear weather. 

t(317) = -11.15, P<0.05 

Effect size (Cohen’s d) = -0.92 

Average speed is significantly higher in clear weather. 

t(2009) = -5.84, P<0.05 

Effect size (Cohen’s d) = - 0.29 

F-test 
Speed variability is significantly higher in clear weather. 

F523,201 = 1.32, P<0.05 

Speed variability is significantly higher in distant fog. 

F648,1361 = 1.11, P<0.05 

Z-test 
Proportion of violation ≥ 10 km/hr above the speed limit 

is significantly higher in clear weather. Z = -5.73, P<0.05 

No significant difference between the proportion of 

speeding ≥ 10 km/hr in distant fog and clear weather. 
Z = 0.69, P > 0.05 
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Acc. 

(g) 

Dec. 

(g) 

Acc. 

(g) 

Dec. 

(g) 

Acc. 

(g) 

Dec. 

(g) 

Acc. 

(g) 

Dec. 

(g) 

Average  0.017 -0.013 0.016 -0.012 0.016 -0.019 0.017 -0.016 

SD 0.017 0.014 0.017 0.0140 0.014 0.016 0.013 0.015 

Min.  0.000 -0.061 0.000 -0.067 0.000 -0.070 0.000 -0.067 

Max.  0.082 0.000 0.079 -0.000 0.065 0.000 0.072 0.000 

Median  0.011 -0.009 0.011 -0.006 0.011 -0.012 0.013 -0.011 

t-test 

 

 

Average acceleration is significantly higher in clear 
weather. 

t(453) = 0.13, P<0.05 

Effect size (Cohen’s d) = -0.02 
No significant difference between the average 

deceleration in near fog and clear weather. 

t(218) = -0.80, P>0.05 
Effect size (Cohen’s d) = -0.12 

No significant difference between the average acceleration 
in distant fog and clear weather. 

t(1191) = -1.14, P>0.05 

Effect size (Cohen’s d) =   -0.10 
No significant difference between the average 

deceleration in distant fog and clear weather. 

t(816) = -1.60, P>0.05 
Effect size (Cohen’s d) = -0.12 

F-test 

No significant difference between the acceleration 

variability in near fog and clear weather. 
F1011,362 = 1.09, P>0.05 

No significant difference between the deceleration 

variability in near fog and clear weather. 
F86,144 = 1.03, P>0.05 

No significant difference between the acceleration 

variability in distant fog and clear weather. 
F384,807 = 1.06, P>0.05 

No significant difference between the deceleration 

variability in distant fog and clear weather. 
F263,553 = 1.14, P>0.05 

Z-test 
No acceleration/ deceleration were found higher/lower 

than ± 0.3g 

No acceleration/ deceleration were found higher/lower 

than ± 0.3g 
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clear weather were above the speed limit as shown in Table 8. Similarly, about 71 percent of the 

trips in distant fog and 82 percent of the trips in respective clear weather were driven at speeds 

more than the speed limit. Table 8 also indicates that speed reduction was more likely to occur in 

foggy weather conditions in comparison with the matched trips in clear weather conditions. The 

odds ratios of driving below the speed limit, in general, were 2.4 and 1.9 times more likely to be 

in near fog and distant fog respectively, than matching trips in clear weather conditions. 

Table 8 Odds Ratio for Speed Behavior(59) 

Weather Condition 
Driving below 

Speed Limit 

Driving above 

Speed Limit 

Odds 

Ratio 

Confidence 

Interval 

Significance 

level 

Near Fog 77 (33.7 %) 151 (66.3%) 2.42 1.69 to 3.45 P < 0.0001 

Matched Clear of Near Fog 386 (17.4%) 1525 (82.6%)    

Distant fog 196 (29%) 480 (71%) 1.90 1.54 to 2.36 P < 0.0001 

Matched Clear of Distant fog 253 (17.7%) 1180 (82.3%)    

 

Speed Selection Model Results 

The log likelihood ratio (LR) was used to confirm the fitness of the model. The LR test statistic 

as shown in Table 9 falls into the rejection region with a p-value < 0.05, which indicates the 

overall explanatory variables of the model have significant effect on the response at a statically 

significant level of 95 percent. To check the possible presence of multicollinearity, Variance 

Inflation Factor (VIF) was calculated for each predictor. The VIF measures how much the 

variance of an estimated regression coefficient increases if predictors are correlated. A VIF 

between 5 and 10 shows a high correlation between predictors and a VIF greater than 10 

indicates that the regression coefficients are poorly estimated due to multicollinearity (65). 

However, the VIF value of all the predictors in the speed selection model fell below 2.5, 

indicating no multicollinearity problem. Only the statically significant variables were retained in 

the final model. Table 9 shows the results of the speed selection model. 

Table 9 Estimation of Ordered Logit Model for Speed Selection (59) 

Parameter DF Estimate 
Standard 

Error 

Wald 

Chi-Square 
P-value Odds Ratio 

95% 

confidence 

Interval 

Intercept 4 1 -1.4876 0.2516 34.9552 <.0001 0.226 - - 

Intercept 3 1 0.00174 0.2508 0.0000 0.9945 1.002 - - 

Intercept 2 1 1.4051 0.2509 31.3594 <.0001 4.076 - - 

Weather 

Clear 1 - - - - - - - 

Distant Fog 1 0.2528 0.0741 11.6346 0.0006 1.288 1.113 1.490 

Near Fog 1 0.2726 0.1234 4.8808 0.0272 1.313 1.031 1.673 

Visibility 
Not Affected 1 - - - - - - - 

Affected 1 0.4953 0.1377 12.9452 0.0003 1.641 1.253 2.149 

Surface 

Condition 

Dry 1 - - - - - - - 

Wet 1 0.7642 0.1878 16.5508 <.0001 2.147 1.486 3.103 

Traffic 

Condition 

Free-Flow (A-B) 1 - - - - - - - 

Mixed-Flow (C - F) 1 1.9217 0.0585 1080.4932 <.0001 6.833 6.093 7.662 
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Parameter DF Estimate 
Standard 

Error 

Wald 

Chi-Square 
P-value Odds Ratio 

95% 

confidence 

Interval 

Speed Limit 

< 55 mph 1 - - - - - - - 

55-60 mph 1 -1.4557 0.2215 43.1710 <.0001 0.233 0.151 0.360 

65-70 mph 1 -1.8661 0.2238 69.5241 <.0001 0.155 0.100 0.240 

Gender 
Male 1 - - - - - - - 

Female 1 -0.2529 0.0580 18.9851 <.0001 0.777 0.693 0.87 

Age 
< 40 years 1 - - - - - - - 

> 40 years 1 0.1628 0.0801 4.1344 0.0420 1.177 1.006 1.377 

Education 

High School 1 - - - - - - - 

Beyond High School 1 0.3776 0.1107 11.6391 0.0006 1.459 1.174 1.812 

Advance degree 1 0.9529 0.1267 56.5368 <.0001 2.593 2.023 3.324 

Marital Status 

Single 1 - - - - - - - 

Married 1 0.2804 0.0794 12.4663 0.0004 1.324 1.133 1.547 

Others 1 -0.3879 0.0936 17.1765 <.0001 0.678 0.437 0.741 

Driver’ s 

Mileage Last 

Year 

< 10000 miles 1 - - - - - - - 

10,000 – 20,000 

miles 
1 -0.5999 0.0731 67.4055 <.0001 0.549 0.475 0.633 

> 20,000 miles 1 -0.3879 0.0936 17.1765 <.0001 0.678 0.565 0.815 

Drivers 

Experience 

< 10 years 1 - - - - - - - 

> 10 years 1 0.5890 0.0934 39.7381 <.0001 1.802 1.500 2.165 

Bridge 
No 1 - - - - - - - 

Yes 1 0.7457 0.2241 11.0670 0.0009 2.108 1.358 3.27 

Super elevation - 1 0.0258 0.0113 5.2036 0.0225 1.026 1.004 1.049 

Curve length - 1 - 0.00113 0.000244 21.4193 <.0001 0.999 0.998 1.000 

Speed Limit 

×Curve Length 

55-60 mph, 

Curve Length 
1 0.000983 0.000247 15.8866 <.0001 

0.457 
At, Avg. Curve 

length = 683.46 m 

0.327 0.638 

65-70 mph 

Curve Length 
1 0.00112 0.000246 20.9590 <.0001 

0.334 

At, Avg. Curve 

length = 683.46 m 

0.237 0.469 

Drivers 

Experience 

×Visibility 

> 10 years, 

Affected 
1 -0.6644 0.1646 16.2971 <.0001 

0.927 

At, affected 
visibility 

0.664 1.295 

Curve × 

Weather  
Curve × Near Fog  0.3835 0.1897 4.0838 0.0433 

1.467 

At Near Fog 
1.012 2.128 

Fit Statistics: 

Likelihood Ratio Test: χ2 = 2284.36, Df = 24, P-value < 0.0001  

Score Test for the Proportional Odds Assumption: χ2 = 1313.20, Df = 48, P-value < 0.0001 

Akaike Information Criterion (AIC) = 13254.61 

-2 Log L = 13200.614 

 

Discussion of Key Factors 

Fourteen variables and three interaction terms were found to be significant in the speed selection 

model. As expected, fog had a significant effect on speed selection. Results showed that drivers 

were likely to travel at significantly lower speeds during foggy weather conditions; more 

specifically the odds of drivers reducing their speeds were 1.31 and 1.28 times higher for drivers 

traveling in near fog and distant fog respectively, in comparison with drivers who were driving in 

clear weather conditions. Driving over the speed limit could be hazardous especially during 

inclement weather conditions including fog; because drivers might not have enough time to 

respond to or mitigate an unexpected event (66). This study showed that drivers reduced their 

speeds to compensate for the negative effect of fog on the primary driving tasks.    
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Findings related to visibility indicated that the odds of drivers reducing their speeds were 1.64 

times greater for drivers who were driving in affected visibility versus those driving in good 

visibility conditions. A similar result was also found for surface conditions. Wet surface was 

found to have a significant impact on speed reduction. More clearly, the odds of drivers reducing 

speeds on wet surfaces were 2.15 times higher compared to dry surfaces.   

Traffic conditions had a positive coefficient as expected. Controlling for all other variables, 

drivers were 6.83 times more likely to reduce their speeds in mixed traffic conditions (level of 

service C to F) compared to free-flow conditions (level of service A and B). It was found that 

female drivers were less likely to reduce their speed compared to male drivers. More clearly, the 

odds of female drivers reducing their speeds were 1.29 times less compared to male drivers (OR 

= 0.777). As expected older drivers had more speed reduction compared to young drivers. More 

specifically, the odds of having more speed reduction percentage were 1.18 times higher for 

drivers older than 40 years compared to drivers of 40 years of age or younger. Education level 

also came out to be significant in the model. It was found that with the increase of education 

level, drivers became more compliant with the speed limit. For instance, the odds of a driver with 

an advanced degree were 2.59 times more likely to reduce speed compared to a driver who is a 

high school graduate. Marital status was also found to be significant with a usual trend of 

married drivers being the safest compared to single drivers (67). More clearly, married drivers 

were 1.32 times more likely to reduce speed compared to single drivers. 

Several factors related to the roadway, including the presence of bridge, superelevation and 

curve length were found to have a significant effect on driver speed selection. Considering 

interaction terms, it was found that at an affected visibility conditions, experienced drivers 

(driving experience > 10 years) were 10 percent less likely to reduce speed compared to less 

experienced drivers (driving experience < 10 years), which indicates experienced drivers are 

usually more confident in reduced visibility compared to less experienced drivers (68).  

Similarly, the interaction between weather conditions and curves indicated that the drivers were 

1.47 times more likely to reduce their speed on curves compared to their speed on tangents 

during near fog. 

Summary  

The main focus of this study was to attain better insights into driver behavior in general and 

speed selection in particular during clear and foggy weather conditions using the SHRP2 NDS 

dataset. The preliminary analysis showed a Weibull speed distribution in near fog under free-

flow conditions while the speeds were normally distributed in clear weather for the matching 

dataset (i.e., same vehicle, driver, route, and traffic state). Descriptive analysis indicated about 10 

percent reduction in speed during near fog and about 3 percent reduction in speed during distant 

fog. The results from the ordered logit model revealed that weather-related factors including the 

presence of fog, visibility, and surface conditions have a significant impact on driver speed 

selection behavior. For instance, results showed that drivers were more likely to select 

significantly lower speeds during foggy weather conditions. More specifically, the odds of 

drivers reducing their speeds from the posted speed limit were 1.31 and 1.28 times higher for 

drivers traveling in near fog and distant fog respectively compared to drivers who were driving 

in clear weather conditions. As mentioned before, the majority of the participants in the SHRP2 

NDS were young (39 percent of the NDS drivers were below 25 years old). Considering the fact 
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that the data used in this study is representing the age distribution of the actual SHRP2 NDS 

data, a more representative sample of age groups might provide different results. 

Foggy weather conditions can negatively affect driver speed perception and ability to see objects 

on the roadway, which is one of the main causes of rear-end and lane departure crashes on 

freeways. Advanced Driver Assistance Systems (ADAS) such as Adaptive Cruise Control 

(ACC), Collision Avoidance Systems (CAS), Collison Warning System (CWS), Dynamic Brake 

Support (DBS), Autonomous Emergency Braking (AES), Lane Departure Warning (LDW), etc. 

are currently being used to improve roadway safety in different adverse weather conditions 

including fog. The main focus of these technologies is to prevent crashes by detecting a conflict, 

alerting drivers and aiding in taking appropriate and timely actions. For instance, the ACC can 

assist drivers to keep a safe distance from a lead vehicle while maintaining a chosen speed (69). 

However, most of the ADAS are based on Machine Vision Techniques, which might be 

inefficient during adverse weather conditions due to the difficulty of detecting objects in adverse 

weather. In comparison, sensor based technologies are usually more effective as they are less 

susceptible to adverse weather. As the ACC works based on ultrasonic, laser, or LiDAR sensors, 

it is more effective in adverse weather conditions including fog compared to other machine based 

ADAS.    

Evaluating driver behavior and performance under the influence of reduced visibility due to 

foggy weather conditions is extremely important to developing safe driving strategies, including 

Variable Speed Limits (VSL). Many roadways across the US currently have weather-based VSL 

systems to ensure safe driving environments during adverse weather. Current VSL systems 

mainly collect traffic information from external sources, including inductive loop detector, 

overhead radar and Closed Circuit Television (CCTV). However, human factors especially 

driver behavior and performance such as selection of speed and acceleration during adverse 

weather are neglected due to the lack of appropriate driver data. The SHRP2 NDS database has 

huge potential in becoming a good source for driver data. The findings from this study indicated 

that the NDS data could be effectively utilized to identify trips in foggy weather conditions and 

to assess the impacts of fog on driver behavior and performance.  

The results from this section provided insights into incorporating naturalistic speed selection 

behavior in Variable Speed Limit systems. While the vast majority of VSL systems are based on 

Road Weather Information System (RWIS) data, previous studies noted many limitations of 

these systems. Utilization of 1-minute real-time weather and surface conditions, and visibility 

limits may improve VSL logics significantly. With the evolution of connected vehicles, Machine 

Vision and other real-time weather social networks such as WeatherCloud, more accurate real-

time data similar to the NDS data will be available in the near future. This study provided early 

insights into using similar data collected from NDS. 
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Car-Following Behavior 

Car-following is a crucial element of driving behavior as it describes the interaction between 

vehicles in a shared lane. Car-following defines the longitudinal motion of a following vehicle, 

as it perceives a lead vehicle in its path. As opposed to free-flow conditions, where a driver 

selects his/her acceleration and deceleration to match their desired speed, car-following 

conditions entail the adjustment of a driver’s behavior in recognition of another road-user. Car-

following behavior is a key process in microscopic simulation models—as well as in the 

fundamental understanding of traffic flow theory—which attempts to bridge the gap between 

driver-level behavior and macroscopic network-level outputs (70). Car-following models have 

evolved from basic understandings to sophisticated and complicated models over the past half-

century, resulting in hundreds of deviations of different car-following models (71).  

Building from the state-of-research, the Wyoming SHRP2 NDS dataset is used to calibrate the 

Gipps car-following model in clear and adverse conditions using the matching trip sets described 

in the introduction of research finding section. The following sections provide a brief literature 

review, describe the data preparation procedures required to identify car-following behavior from 

the SHRP2 NDS, summarize the methodology used to understand deviations in car-following 

behavior for adverse and clear weather conditions, and present the analytic results. Finally, the 

implications of the car-following research conducted as part of the Wyoming IAP Phase 2 is 

discussed and next steps for implementation in the third phase are described. 

Literature Review 

A variety of car-following models have been used to investigate the impact of adverse weather 

conditions on driving behavior. Hoogendoorn et al. examined the impact of fog conditions on 

driving behavior using a psychophysical plane (i.e., the evaluation of driving behavior relative to 

the following distance and relative velocity between vehicles) (72). The study utilized a driving 

simulator that induced fog conditions to compare the location of “action points” (i.e., instances 

defined by relative speed and following distance where the driver reacted to a lead vehicle) in 

clear and adverse conditions. Results indicated that in reduced visibility, the location of the 

action points were significantly more dispersed than those in clear conditions. In addition, 

drivers appeared to be less perceptive to small changes in relative velocity in adverse conditions 

(72).  

In a report prepared for the FHWA, Rakha et al. discussed the findings from an extensive study 

aiming to measure the traffic impact of inclement weather conditions using microscopic (i.e., 

trajectory-level) data (73). As part of this study, car-following models were compared and the 

Gipps car-following model was identified as being highly flexible, capable of capturing driver 

behavior under multiple regimes and across multiple road types; therefore, it was suggested for 

use in weather-related car-following model calibration. Additional studies indicate similar results 

using NDS data from the 100-Car Study (74) and trajectory-level data from an instrumented 

research vehicle (IRV) (75). 

Data Preparation 

Capturing car-following behavior using NDS trajectory-level data requires the use of the forward 

facing radar, vehicle velocity, and vehicle acceleration. In addition, forward-facing video was 

used to confirm expected conditions. For this analysis, segments of continuous car-following 
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behavior (car-following events) from a single follower-leader pair were extracted based on the 

following criteria:  

 The car-following event lasted a minimum of 20 seconds; 

 The following distance did not surpass 197 ft. (60 meters); 

 The minimum speed of the subject (following) vehicle was greater than 3.2 ft/hr (1 m/s). 

A minimum car-following event length was selected based on a review of literature which 

showed a range from 5 seconds to 30 seconds by which research teams extracted following 

behavior (74, 76). For this research, a length of 20 seconds was selected to ensure behavioral 

continuity without severely limiting the number of car-following events. The maximum 

threshold for following distance was identified from the VTTI technical guidance, which 

indicated that radar quality decreased at measured distances greater than 60 meters. Lastly, a 

minimum speed was identified to ensure events occurred during expected freeway conditions, in 

which a vehicle never comes to a complete stop. 

 

Figure 16 (A) Trip set that includes one trip in clear conditions (A, left) and one trip in rain 

conditions (A, right). (B) Trip set that includes two trips in clear conditions (B, left and 

middle) and one trip in snow conditions (B, right) (77) 

As described in previous sections, the car-following analysis also leveraged the trip sets, which 

include matching sets of trips with a single driver in differing weather conditions (one trip in 

adverse conditions and two trips in clear conditions). Evaluation on the basis of trip sets enabled 

the research team control over inter-driver heterogeneity (or differences between different 

drivers), while focusing on weather induced intra-driver heterogeneity (or differences between 
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driving behavior in different environmental conditions). When evaluating driver heterogeneity, 

many external and internal factors impact driver behavior; however, with the use of matching 

trip sets with the same drivers, same routes, and often the same time of day, isolation of 

behavioral changes due to weather conditions is highlighted. 

As mentioned, identification of car-following events requires the use of the vehicle network 

speed (from CAN-Bus), vehicle acceleration (from CAN-Bus), following distance (from radar 

unit), and relative velocity from lead vehicle (from radar unit). In efforts to increase the usability 

of the radar data, VTTI processed the radar data to sync the radar fields with the time-series 

fields reported from the CAN-Bus and GPS units, as well as address other challenges related to 

inherently noisy radar data. Once received and evaluated, Wyoming’s research team conducted 

one additional processing step using a moving average filter to smooth the reported relative 

velocity values (as the relative velocity readings were significantly more noisy than those of the 

following distance) (77).  

 

Figure 17 Effect of Moving Average Filter. (A) Plot A shows the relative velocity in m/s 

over time; the blue dots indicate the VTTI processed range-rate, while the red line shows 

the updated moving average filter. (B) Plot B shows the relative velocity in the x-axis and 

the inter-vehicle spacing in meters between lead and following vehicles in the y-axis using 

the VTTI processed radar data. (C) Plot C shows the relative velocity in the x-axis and the 

inter-vehicle spacing in the y-axis using the smoothed relative velocity data from the 

moving average filter (77) 
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Once the data were processed, an efficient procedure was developed and implemented to 

automatically identify car-following events within each trip. This routine ingests the vehicle 

speed, acceleration, following distance, and relative velocity, and exports the time segments by 

which car-following events meeting the designated criteria were identified. Automation of the 

car-following event detection process proved to be successful in multiple studies (74, 76) and is 

required for processing the quantity of trips collected for this study. Validation of the automated 

procedure was conducted in order to provide additional confidence for the methodology. 

 

Figure 18 Verification of Automatic Identification of Car-Following Events. (A) Plot A 

shows the inter-vehicle spacing (y-axis) in meters with the corresponding VTTI timestamp 

for the selected car-following event (x-axis). The two red dots indicate points during the 

car-following event, which correspond to the images provided in B and C. (B) Image B 

corresponds to a point within the car-following event at VTTI Timestamp 1417530 (which 

can be cross-referenced in Plot A) where the inter-vehicle spacing was reported to be 

approximately 30m. (C) Image C corresponds to a point within the car-following event at 

VTTI Timestamp 1432747 – 15 seconds after the first image – where the inter-vehicle 

spacing is approximately 6m (77) 

Once car-following events were extracted for each trip, summary statistics related to each 

individual car-following event and the complete trip were aggregated. In order to analyze a trip 

set for car-following behavior, a sufficient amount of car-following behavior must be prevalent 

within each trip. After a review of a selection of trips, a minimum of 4.6 minutes of car-

following behavior was required from each trip, as well as a minimum of 2 distinct car-following 

events. This procedure eliminated individual trips that did not contain enough instances of car-

following for analysis; therefore, trip sets were evaluated to ensure at least one adverse trip and 

one clear trip remained. Next, in order to maintain the correlation within trip sets, a maximum of 

50 percent difference in car-following time between each clear trip and adverse trip within a trip 

set was required. A 50 percent difference was selected as a threshold to ensure that comparisons 
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are only conducted between trips with similar amounts of car-following behavior because the 

quantity of car-following data impacts the calibration procedure. The magnitude of the threshold 

value was selected by balancing these comparison requirements with the sample size 

requirements. Once eliminating all trip sets that did not meet these conditions, the remaining trip 

sets (containing at a minimum one adverse trip and one clear trip) were used in the analysis. 

Methodology 

Car-following model calibration is a crucial factor to this study, as successful methods may 

enable practical application in agency microsimulation models; therefore, the Gipps car-

following model—a common model used in the AIMSUN microsimulation software—was 

selected for analysis.  

Equation 3 illustrates the Gipps car-following model, which is a safety-distance car-following 

model that predicts the following vehicle’s speed in such a way to maintain a safe following 

distance and avoid a collision. Model details can be found in the original model presentation (78) 

and in recent studies evaluating the model (79, 80).  

 

𝑣𝑓(𝑡 + 𝜏) = 𝑚𝑖𝑛

{
 
 

 
 

𝑣𝑓(𝑡) + 2.5𝑎𝑓𝜏 ∗ (1 −
𝑣𝑓(𝑡)

𝑉𝑓
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 Equation 3 

where 

𝑓 subscript indicating following 

vehicle 

𝑙 subscript indicating lead vehicle 

𝑉 desired speed [m/s] 

𝑎 maximum acceleration desired [m/s2] 

𝜏 true reaction time [s] 

 

𝑏 most severe braking desired [m/s2] 

�̂� estimated desired severe braking 

[m/s2] 

𝑠 vehicle size + minimum following     

______ distance at stop (speed=0) [m] 
𝑥(𝑡) location of front of vehicle at time (t) 
𝑣(𝑡) speed of vehicle at time (t) [m/s]

Car-following events within an NDS trip were extracted and the Gipps model was calibrated 

using common calibration procedures identified through a thorough literature search: 

 The Root Mean Square Error (RMSE) was selected as the objective function to compare 

modeled and actual driving behavior. 

 The following distance was selected as the Measure of Performance (MOP), which is the 

input variable to the objective function. 

 A genetic algorithm was constructed as the search mechanism used to minimize the 

objective function. 

 The search space for each of the six calibratable parameters was defined referencing the 

original Gipps model formulation and additional studies that used the Gipps model.  
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Once the Gipps model calibration was completed for each individual trip, the trips were 

aggregated into their trip sets. Next, the trip sets were separated into categories based on the 

adverse weather condition: {fog, very light rain, light rain, moderate rain, heavy rain, and snow}. 

Preliminary evaluation of calibration scores and parameter sets within these categories showed 

few statistically significant differences among different weather conditions. These results were 

expected, as previous studies identified correlation between parameters that makes it difficult to 

draw conclusions from parameter values (even when those parameter values are expected to 

correspond to understandable driving characteristics; e.g., reaction time and desired deceleration) 

(81). Therefore, the research team developed a novel trajectory validation technique which 

enabled the evaluation of modeled car-following behavior in differing adverse weather 

conditions. Once expected characteristics of car-following behavior (i.e., following distance, 

relative velocity, and acceleration behaviors) were shown to deviate more significantly in 

increasing weather intensities (compared with clear weather conditions), the modeled behavioral 

changes were compared with the observed behavioral changes from the actual car-following 

events. For example, the modeled reduction of headway in snow conditions is compared with the 

actual reduction of headway in snow conditions. 

The second phase of this IAP is intended to enable a full-scale analysis in preparation for the 

third phase, which includes actual countermeasure implementation. To this end, substantial effort 

was placed on automating each of the procedures described above and implementing them into a 

comprehensive tool for wide-spread analysis.  

Analysis 

For this analysis, 389 trip sets (i.e., representing 1165 trips) were selected and processed through 

data preparation procedures. Of these, 111 trip sets (i.e., representing 270 trips) passed the 

criteria ensuring sufficient existence of car-following behavior and trip set matching. Table 10 

presents summary statistics describing the trips and car-following behavior available for each 

adverse weather condition.   

Table 10 Data used for analysis (77) 

Weather 

Conditions 

Count Average 

Trip 

Sets 
Trips 

Trip 

Length 

[min] 

Distance 

Traveled 

[km] 

%Time 

in car-

following 

Time in 

car-

following 

[min] 

No. of 

car-

following 

events 

Mean 

trip 

velocity 

[m/s] 

All 111 270 26.4 11.4 47.7% 11.5 6.8 25.9 

Fog 2 5 24.2 11.2 59.8% 14.7 6.6 28.3 

Very Light Rain 24 60 26.4 11.2 51.3% 12.5 7.5 25.6 

Light Rain 59 146 25.9 11.2 46.9% 11.3 6.7 25.9 

Moderate Rain 17 40 31.1 13.6 41.8% 11.0 6.6 25.4 

Heavy Rain 3 7 19.1 9.0 53.3% 10.3 6.4 28.4 

Snow 4 10 27.5 13.2 38.1% 8.1 4.1 27.1 
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As described in the methodology, the calibration procedure produced Gipps model parameters 

and a calibration score (i.e., the metric describing how well the modeled trajectory from the 

resulting parameter values matches the actual trajectory). Table 11 shows the average calibration 

scores of all trip sets in each weather condition. These scores are divided between the clear trips 

within each trip set and the adverse trips within the trip set. A comparison between the 

calibration scores of the clear and adverse trip sets were conducted to evaluate if the Gipps 

model can better represent driving behavior in clear or adverse conditions; however, a 

statistically significant difference was only found to exist for rain at a moderate intensity. 

Table 11 Calibration scores, differentials, and t-test evaluation (77) 

Weather Conditions 
Average Clear 

Score (RMSE) 

Average 

Adverse Score 

(RMSE) 

% Score 

Difference 

 (+, clear is 

higher) 

T-test, P-value, 

2side, 1paired 

Fog 6.19 5.35 14.6% 0.698 

Very Light Rain 5.79 5.44 6.3% 0.224 

Light Rain 5.23 5.29 -1.1% 0.773 

Moderate Rain 6.00 4.51 28.3% 0.005* 

Heavy Rain 4.36 4.24 2.7% 0.837 

Snow 3.20 3.28 -2.5% 0.927 

* Statistically significant at a 95% Confidence Level 

Table 12 shows the average calibrated Gipps parameter values for each weather condition. The 

first noticeable trend is that the average value for reaction time during clear weather conditions is 

lower than the reaction time for adverse weather conditions, which is an intuitive behavioral shift 

as drivers may have more difficulty perceiving their environment during inclement weather 

events. A similar observation is shown for the minimum following distance at a stop. For trips 

with clear conditions, the average parameter value is lower than the corresponding value in each 

adverse weather condition. This finding is also supported by the notion that drivers are likely to 

increase their following distance during adverse weather conditions. 
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Table 12 Average calibrated Gipps parameter values for each adverse weather condition 

(77) 

Weather Conditions 

Average 

𝜏 𝑉 𝑎 𝑏 �̂�  𝑠^ 𝑏
�̂�
⁄  

Clear 0.8 33.1 1.6 -2.5 -2.4 2.9 1.1 

Fog 1.1 32.2 1.0 -2.9 -2.7 4.4 1.1 

Very Light Rain 1.1 33.2 1.6 -2.5 -2.3 3.1 1.1 

Light Rain 1.0 31.1 1.7 -2.5 -2.2 3.2 1.1 

Moderate Rain 1.0 30.2 1.5 -2.5 -2.3 3.6 1.1 

Heavy Rain 1.7 34.3 1.3 -2.2 -1.7 3.8 1.2 

Snow 1.2 31.8 1.5 -2.0 -2.0 3.5 1.0 

*Due to the nature of the NDS data, the equations were adjusted to consider parameter “s^” as 

the distance between the front bumper of the following vehicle and the rear bumper of the lead 

vehicle at a stop. 

 

Discernable trends for the remaining Gipps parameter values are not captured in Table 12. While 

each of the Gipps parameters are intended to correspond to easily understandable elements of 

driving behavior, taking the average of each parameter introduces an analytic error caused by 

parameter correlation (81). An evaluation of parameter correlation showed significant correlation 

between the reaction time and predicted lead vehicle deceleration, as well as between the desired 

deceleration and predicted lead vehicle deceleration. 

For this reason, a new validation procedure was introduced to identify behavioral shifts captured 

by the calibrated Gipps model for each adverse weather condition. The validation procedure is 

called trajectory validation and entails the comparison of following vehicle behavior in response 

to a single lead vehicle trajectory for each calibrated Gipps parameter set. Using this method, 

driving behavior is normalized and can be averaged for comparison among weather conditions. 

Results from the trajectory validation procedure are shown in Table 13 and Table 14. Table 13 

provides the RMSE between driver behaviors in clear and adverse weather conditions. Driver 

behavior is captured using intuitive metrics: following distance, relative velocity, and 

acceleration. The magnitude of the RMSE value indicates the difference between the clear and 

adverse trips within all trip sets for each weather condition. Therefore, a smaller RMSE value 

indicates greater similarity between the driving behavior in adverse and clear weather conditions, 

and a larger RMSE value indicates greater difference in driving behavior. Results from each 

driving behavior show that as weather intensity increases, the corresponding difference between 

modeled behavior in clear and adverse conditions also increases.  
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Table 13 Average difference for following distance, relative velocity, and acceleration (77) 

Weather Conditions 
Average RMSE 

Following Distance Relative Velocity Acceleration 

Fog 5.705 0.494 0.240 

Very Light Rain 5.640 0.304 0.211 

Light Rain 5.377 0.323 0.217 

Moderate Rain 6.827 0.368 0.244 

Heavy Rain 12.374 0.532 0.371 

Snow 13.738 0.504 0.304 

 

Similarly, Table 14 presents the average R correlation coefficient values comparing driver 

behavior in adverse and clear conditions for all trip sets within each weather condition. While 

RMSE describes the arithmetic difference between the modeled clear and adverse trajectories 

within each trip set, it does not capture in what way the trajectories are different. Therefore, the R 

correlation coefficient was calculated to measure the linear dependency between the trajectories. 

An R value of +1 represents an exact positive linear correlation and a value of 0 represents no 

linear correlation. Similar trends are found when comparing correlation between the clear and 

adverse trajectories within each trip set.  

Table 14 Average correlation errors for following distance, relative velocity, and 

acceleration (77) 

Weather Conditions 
Average R Coefficient 

Following Distance Relative Velocity Acceleration 

Fog 0.938 0.784 0.862 

Very Light Rain 0.931 0.883 0.887 

Light Rain 0.912 0.863 0.876 

Moderate Rain 0.792 0.848 0.837 

Heavy Rain 0.896 0.815 0.684 

Snow 0.874 0.791 0.751 

 

These results support the understanding that drivers deviate from their normal behavior more 

significantly in severe adverse weather conditions compared to less severe weather conditions. 

Since this finding was derived from calibrated Gipps parameter sets, it supports the notion that 

calibration of the Gipps car-following model can capture deviations in driver behavior inflicted 

by inclement weather events. 

While these findings show calibrating the Gipps model from car-following events identified in 

adverse weather conditions and clear weather conditions produce increasingly different driver 

behaviors as weather intensity increases, it doesn’t explicitly indicate how the driver behavior is 

changing (i.e., a driver maintained an X-second larger headway in snow conditions compared to 

clear conditions). This question is conducted using the driver behavior derived from the 
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trajectory validation mechanism, and the accuracy of the results are compared with the actual 

driving behavior from the original car-following events. 

This analysis was conducted for the following time gap (i.e., time headway measured from the 

front bumper of the following vehicle to the back bumper of the lead vehicle) and the relative 

velocity between the lead and following vehicles. The results of these comparisons are shown in 

Table 15 and Table 16.  

Table 15 compares the observed and calibrated time gaps maintained by drivers in different 

weather conditions. A negative value indicates the value for adverse conditions are greater than 

for clear conditions. For clarity, an example of result interpretation is provided:  

In observed conditions, the mean time gap during very light rain is 0.11 seconds greater 

than matching clear conditions. Comparatively, the model predicted a mean time gap of 

0.09 seconds greater in very light rain conditions.  

The results indicate that in very light rain, light rain, and moderate rain conditions, the 

maintained time gap is translated accurately from the observed behaviors to the calibrated model. 

The remaining weather conditions show less correlation in time gap; however, this is likely due 

to the trip sample size available for these conditions as part of this analysis. 

Table 15 Observed and calibrated time gap differences between clear and adverse weather 

conditions (77) 

Weather 

Conditions 

Average Difference in 

Actual Trajectories Validation Trajectories 

Mean 

Time 

Gap [s] 

Percentile 

85 Time 

Gap [s] 

Time Gap 

Standard 

Deviation 

[s] 

Mean 

Time 

Gap [s] 

Percentile 

85 Time 

Gap [s] 

Time Gap 

Standard 

Deviation 

[s] 

Fog -0.07 -0.05 0.11 -0.40 -0.59 -0.17 

Very Light Rain -0.11 -0.10 0.02 -0.09 -0.10 -0.02 

Light Rain -0.13 -0.17 -0.04 -0.11 -0.16 -0.05 

Moderate Rain -0.24 -0.28 -0.09 -0.14 -0.20 -0.04 

Heavy Rain -0.15 -0.25 -0.10 -1.05 -1.55 -0.31 

Snow -1.64 -2.25 -0.58 -0.89 -1.20 -0.22 

 

Table 16 compares the observed and calibrated relative velocity maintained by drivers in 

different weather conditions. The relative velocity is defined as the following vehicle speed 

minus the lead vehicle speed. A negative value indicates the value calculated for adverse 

conditions are greater than for clear conditions. For clarity, an example of result interpretation is 

provided:  
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In observed conditions, the maximum relative velocity during very light rain is 0.08 seconds less 

than matching clear conditions. Comparatively, the model predicted a maximum relative velocity 

of 0.27 seconds greater in very light rain conditions.  

These results show less correlation than those for time gap in Table 15. This is likely due to the 

unique nature of relative velocity for each car-following event scenario. A comparison of 

maximum relative velocity (i.e., the maximum speed differential when the following vehicle is 

traveling faster than the lead vehicle) between actual and modeled validation trajectories show 

little correlation due to the stochasticity of the different car-following events represented; 

however, focusing on the modeled validation trajectory data, a slight positive trend is detected as 

weather intensity increases. This trend is likely associated with the increased reaction time for 

more severe weather conditions. 

Table 16 Observed and calibrated relative velocity differences between clear and adverse 

weather conditions (77) 

Weather Conditions 

Average Difference in 

Actual Trajectories Validation Trajectories 

Maximum 

Relative 

Velocity [m/s] 

Relative 

Velocity 

Standard 

Deviation [m/s] 

Maximum 

Relative 

Velocity [m/s] 

Relative 

Velocity 

Standard 

Deviation [m/s] 

Fog 0.54 0.09 -0.20 -0.09 

Very Light Rain 0.08 -0.04 -0.27 -0.08 

Light Rain -0.09 -0.04 -0.19 -0.06 

Moderate Rain -0.02 0.01 -0.24 -0.07 

Heavy Rain -0.73 -0.19 -1.45 -0.40 

Snow 0.15 0.16 -0.88 -0.30 

 

These results produce evidence of the ability of the Gipps car-following model to replicate 

driving behavior in differing weather conditions. In addition, the calibration procedures and 

derived parameter sets lay the foundation for deriving weather-specific microsimulation 

guidance, which could be used to evaluate various strategies (e.g., VSLs) based on drivers 

behavior in differing weather conditions. 

Summary  

The car-following analysis in Phase 1 of the Wyoming IAP focused on developing the scope by 

which the project team would analyze car-following behavior. Phase 2 focused on transforming 

the scope into concrete analytic procedures, and then automating those procedures to enable 

analysis on a large number of NDS trips in a wide range of adverse weather conditions. The 

intricate car-following behavior analysis completed in this project phase will be expanded in 

Phase 3 to include a greater sample size that will better represent each weather condition, as well 

as the calibration of other common car-following models. After, the findings will be analyzed to 

ensure that calibrated models adequately represent driving behavior. The aim of Phase 3 is to 



 

 

54 

 

conduct a more comprehensive analysis with more NDS trips, as well as use the findings to 

provide tangible guidance for microsimulation modeling of driver behavior in adverse weather 

conditions needed for the Wyoming Connected Vehicle Pilot Program. 
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Lane-keeping Behavior: Preliminary Analysis 

Literature Review 

According to the Federal Highway Administration (FHWA), 90 percent of crashes are related to 

driver behavior, and human error is identified as the primary factor contributing to over 60 

percent of crashes (82). Many studies in the literature have analyzed drivers’ lane-keeping ability 

from distraction perspective (83–86). While these studies are important to understand how 

different forms of distracted driving affect lane-keeping ability, the impact of heavy rain on lane-

keeping ability has not been researched in naturalistic settings before. Adverse weather 

conditions such as fog, snow, ground blizzard, slush, rain, and strong wind have been recognized 

to have significant effects on traffic flow dynamic, drivers’ performance and severity of crashes 

(87, 88). Previous studies showed that the probability of rear-end crashes increases during 

adverse weather conditions (89, 90). According to the FHWA, weather contributed to over 24 

percent of the total crashes between 1995 and 2008. In Canada and the UK, such crashes account 

for approximately 30 percent and 20 percent respectively (3, 4).   

Several studies concluded that crashes increase due to vision obstruction during rainfall by 100 

percent or more (6, 91), while others found more moderate (but still statistically significant) 

increases (92, 93). Sudden reduction in visibility was found to increase the severity level of 

crashes and tend to involve more vehicles. While these studies provided insights into the impacts 

of adverse weather conditions on traffic safety, they failed to provide comprehensive 

understanding of the underlying causes of weather-related crashes due to lack of driver behavior 

data.  

Drivers’ lane-keeping performance is one of the vital factors that can affect run-off-road events. 

Deterioration of lane-keeping ability might be exacerbated by adverse weather conditions due to 

reduction in visibility and slippery surface conditions (94, 95).  

Understanding drivers’ responses, when the visibility falls below a certain threshold, might be 

helpful not only in reducing the lane-departure related crashes in heavy rain, but also in finding a 

new efficient threshold for Lane Departure Warning (LDW) systems in adverse weather 

conditions (96). Although, many studies have been conducted in analyzing driver behavior, there 

are not many researches studies that have focused on the effects of heavy rain on driver 

performance on a microscopic scale (17, 97). In the last few years, naturalistic driving studies 

(NDS) have made it possible to obtain more information about driver behavior and performance 

in different conditions. The NDS data will allow for better understanding of how drivers adjust 

their behaviors to compensate for increased risk due to reduction in visibility.  

The main goal of this section is to investigate the feasibility of using the Second Strategic 

Highway Research Program (SHRP2) NDS data to analyze drivers’ lane-keeping ability in heavy 

rain and slippery road conditions. This was conducted by compiling a sample dataset from the 

SHRP2 NDS data, then extracting and reducing data for heavy rain trips and their matching clear 

weather condition trips on freeways. 
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Data Preparation 

Data extraction and reduction are crucial steps in this study. As mentioned earlier, a subset of 

data reduced from the SHRP2 NDS were requested to examine driver response in rain/heavy rain 

in the States of Florida and Washington. In particular, 50 NDS trips during rain/heavy rain on 

freeway segments were targeted. The provided NDS data included forward-facing and rear-

facing videos, basic trip characteristics, and selected vehicle time-series variables. The RID as 

well as visual inspection of aerial and street view images from Google maps were also utilized. 

To address the first research question of identifying appropriate trips in rainy conditions, a 

preliminary criterion for data extraction was developed. 

An additional 100 matching NDS trips during clear weather on the same segments and subjects 

in Florida and Washington States were extracted. A total of 147 valid trips with requested 

characteristics in rain/heavy rain and their matching clear weather trips were considered in this 

study. Although most of the trips in heavy rain were matched with two trips in clear weather 

conditions, only a matching rate of 1:1 was achieved in this study due to data limitation; some of 

the provided trips in rain did not have matching trips in clear weather and thus were excluded 

from the analysis. Matching is important to control for sundry factors such as driver population, 

and roadway geometry.  

During the manual verification of the trips, some trips were found to be driven in both free flow 

and heavy traffic conditions. These trips were considered as mixed traffic. Real-time traffic data 

are not available in the NDS data. To isolate the impact of heavy rain on driver behavior, trips in 

free-flow traffic were identified. Traffic conditions were characterized and categorized into two 

groups including heavy traffic and free flow conditions. Traffic density was determined based on 

the number of vehicles present in the NDS driver’s travel lane, the ability of selecting speed and 

the ability of maneuvering between lanes. A trip was considered as a free flow speed when the 

NDS driver has no leading traffic in any lanes or when a leading vehicle is present at least in one 

lane, but NDS driver is still not affected by other vehicles. Other conditions where NDS drivers 

were affected by other vehicles were considered as other traffic conditions. All the NDS trips 

were manually checked to identify the accurate traffic conditions. Travel times were also used to 

identify trips in free-flow/light traffic. More clearly, if a trip was travelled within the speed limit 

range, trip was considered as a free-flow condition, otherwise, the trip was considered as other 

traffic conditions (mixed/heavy traffic). As mentioned earlier, roadway characteristics including 

speed limit information are provided in the RID. 

For automatic identification of trips in rain, other basic trip characteristics such as number of 

brake activations, high variability in headway times and distances, Electronic Stability Control 

(ESC), roadway departures, number of Anti-Lock Braking System (ABS) activations, and 

number of traction control activations were examined in this study. A preliminary analysis on 

trips in rain/heavy rain indicated that there were no ABS, traction control, or electronic stability 

control activations in any of the trips. This could be explained due to the fact that the activation 

of these safety features is not common in rain on freeway segments; moreover, these variables 

are not available in the NDS data for all vehicles. As mentioned earlier, 147 NDS total trips were 

acquired, but only 56 were considered for the preliminary analysis when matching is needed. The 

total 147 acquired trips were utilized in developing the lane-keeping logistic regression model. 
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Methodology 

Logistic regression has been used to develop the lane-keeping model and investigate the factors 

that affect drivers’ lane-keeping ability in different weather conditions. The dependent variable 

in the model is Standard Deviation of Lane Position (SDLP), and the explanatory variables are 

the factors which may have significant influence on the lane-keeping ability. The SDLP is a 

binary variable which defined as two levels including SDLP less than 19.6 in (50 cm) and SDLP 

greater than 50 cm (98). More specifically, if the average SDLP is maintained within 19.6 in (50 

cm) during the trip, lane-keeping performance can be considered within an acceptable reliability 

level and vice versa. It is worth mentioning that 19.6 in (50 cm) threshold was selected with 

considering Lane Departure Warning (LDW) system application. Average of SDLP (11.85 in 

[30.1cm] during heavy rain) was not used as a threshold in this study as the driver would be still 

safe within this range given that it is not due to distraction. Standard Deviation of Lane Position 

(SDLP) has been widely used in examining lane-keeping ability. Previous studies used SDLP for 

assessing drivers’ lane-keeping ability (99, 100). SDLP can be considered as a surrogate for 

overall driving safety due to the fact that an increase in SDLP is associated with an increase in 

the probability of lane departure events (i.e., when the outside edge of the vehicle tires crosses 

the lane marking), a precursor of run-off-road crashes (101). 

In order to consider the SDLP as a crash surrogate measure, SDLP was calculated for each NDS 

trip. Weather conditions was used as explanatory variable in this section. Weather conditions 

were considered in 3 levels: clear weather, light rain, and heavy rain. The model also accounted 

for traffic conditions, posted speed limit, and speed behavior. In case of speed behavior, the 5 

kph (3 mph) interval was considered based on the Variable Speed Limit application (variable 

speed limits are adjusted at 5 kph/mph increments). Also the median of the speed limits was 

considered as the threshold. Driver demographics and vehicle characteristics (make, model, and 

year) data were not provided and hence, only environmental and traffic variables were 

considered. The Table 17 below is a summary of the different variables used in the lane-keeping 

model.  

 

Table 17 Data Description (102) 
Variable Description Type Levels 

Response Variable 

SDLP 
Standard Deviation of Lane Position Binary  SDLP<=50 

SDLP>50 

Explanatory Variables 

Traffic Traffic Condition Binary 
0= Free-flow 

1= Traffic  

Speed Limit Posted Speed Limit Categorical 
0= below 90 km/hr  

1= above 90 km/hr  

Speed Behavior 
Speed selection in various weather 

conditions 
Categorical 

More than 5 km/hr  below the speed limit 

0–5 km/hr  below the speed limit  

0–5 km/hr  above the speed limit 

More than 5 km/hr  above the speed limit 

Weather Type of weather condition Categorical 

Clear 

Light Rain 

Heavy Rain 

 



 

 

58 

 

A lane-keeping model was developed using logistic regression to better understand factors 

affecting drivers’ lane-keeping ability in different weather conditions. Logit models have been 

utilized in previous studies(103, 104). One of the advantages of logistic regression in comparison 

with ordinary least-squares regressions is that independent variables do not have to be normally 

distributed, or have equal variance in each group. Also, predictors in the logistic regression can 

be continuous, categorical, or a mixture of both continuous and categorical. Equation 4 shows 

logistic regression model with x as an independent variable, P(x) as a probability of having 

success for a binary response variable y considering explanatory variable x, and   is the 

probability of response when explanatory variables are the reference level (or when x=0) (34). 

Also the conditional probability of positive outcome can be determined by equation 5. 

 
P(x)

Logit[P(x)]=log( )=α+β
1-P(x)

x  
Equation 4 

α+βx

α+βx

exp(α+βx) e
P(x)= =

1+exp(α+βx) 1+e
 

                                                                                         

Equation 5                                                  

 

The maximum likelihood (ML) method was used to measure the associations by constructing the 

likelihood function as follows. For more discussion regarding ML method refer to (35).  

1

1

( ) ( ) (1 ( ))i i

n
y y

i i

i

l P x P x 



   Equation 6 

                                                                                        

In Equation 6, iy  represents the ith observed outcome, with the value of either 0 or 1, and i=1, 2, 

3,…, n, where n is the number of observations. The best estimate of β could be obtained by 

maximizing the log likelihood expression as: 

 

 
1

( ) ln( ( )) ln( ( )) (1 ) ln(1 ( ))
n

i i i i

i

LL l y P x y P x 


      Equation 7 

                                             

Odds ratio is used in many studies to interpret the logistic regression results (36). By 

exponentiating the coefficient (  ), odds ratio could be obtained in a logistic regression model 

(35).  

exp( )jOR   Equation 8 
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Analysis 

Descriptive Statistics 

The NDS video data were manually analyzed to verify and validate results. Classifying the NDS 

data into two different traffic states (free-flow and mixed traffic) resulted in a total of 56 trips 

that were considered for the preliminary analysis.  

Table 18 shows a summary of the statistics for the number of trips, length of routes, total travel 

times, and percentages of wiper use at different settings along with their matching clear weather 

trips. All corresponding RID data were identified and linked to the provided NDS data. The 56 

NDS trips constituted a total of about 1,103 miles (1,775 interstate kilometers) traveled over 

21.94 hours on six interstate routes in the states of Florida and Washington. These trips occurred 

mostly on I-4, I-75, and I-275 in Florida, and on I-5, I-90, and I-405 in Washington. 

Table 18 Summary Statistics of NDS Trips Considered in this Section (102) 

 
Weather 

Condition 
  

Heavy 

Rain 

Matched 

Clear 
Light Rain 

Matched 

Clear 
Total 

Free-

Flow 

Condition 

Number of Trips 7 7 9 9 32 trips 

Total Duration (hr) 3.26 2.80 1.42 1.37 8.85 hr 

Total Length (km) 308.67 308.67 172.76 172.76 962.86 km 

% Wiper Setting 

0 6.1% 99.5% 0.0% 96.6% 
 

 

 

 

1 0.0% 0.0% 60% 3.4% 

2 0.0% 0.0% 22% 0.0% 

3 93.9% 0.5% 18% 0.0% 

Heavy/ 

Mixed 

Traffic 

Number of Trips 3 3 9 9 24 trips 

Total Duration (hr) 1.34 1.64 5.44 4.67 13.09 hr 

Total Length (km) 95.3 95.3 309.64 312.05 812.29 km 

% Wiper Setting 

0 0.0% 99.9% 6% 91.2% 
 

 

 

 

1 10% 0.0% 50% 8.8% 

2 14% 0.0% 26% 0.0% 

3 75.2% 0.1% 18% 0.0% 

Total Number of Trips 10 10 18 18 56 

 

Analysis of wipers status as well as visual inspections of all NDS videos were utilized to identify 

heavy/light rain and clear weather condition trips.  

Table 18 provides a breakdown of the percentage of the time that the wipers were engaged at 

each level. If the wipers were engaged at level 3 for greater than 75 percent of the whole trip 

duration, the trip will be considered as a heavy rain trip. Heavy rain trips in free-flow traffic had 

about 94 percent active wipers at setting 3. Similarly, if the wipers were active at level 1 or level 

2 for greater than 75 percent, the trip would be considered as a light rain trip (light rain trips in 

free-flow conditions had 82 percent active wipers at settings 2 and 3). A trip with inactive wipers 

(level 0) for more than 91 percent of the time would be marked as a clear weather trip (0 percent 
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for settings 2 and 3). This classification was used to provide a general consensus of the impact of 

heavy and light rain only on drivers’ lane-keeping ability as well as other driving behaviors for 

the free-flow conditions only.  

Table 19 to Table 23 show preliminary analysis and various statistical tests for the main time-

series variables of interest for heavy rain/clear weather in the free-flow conditions. In addition, 

descriptive statistics are shown for trips that included heavy rain and clear weather conditions 

within the same trips. Cohen's d effect size which is an indication of the magnitude of the 

difference between heavy rain and clear weather is also provided in Table 19 to Table 23. 

Cohen's d effect size can be interpreted as d=0.2 small size effect; d=0.50 medium size effect; 

and d=0.80 large size effect (105). 
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Table 19 Preliminary Analysis for the NDS Instrumented Vehicles-Speed (102) 

Speed (km/hr ) 

Statistical 

Tests 

Free-Flow Traffic (Matched Trips) Comparison within Trips 

Heavy Rain Matched Clear Heavy Rain Clear Weather 

Average 85.07 101.39 91.8 106.36 

SD 14.69 11.25 14.65 6.53 

Min. 17.4 70.4 35.09 53 

Max. 109.4 133.5 125.5 125.9 

Median 87.5 101 94.19 106 

t-Test 

Avg. Speed is significantly lower in Heavy 

Rain. t(21021)=-303, P<0.05 

Effect size (Cohen’s d)=-1.24 

Avg. Speed is significantly lower in Heavy 

Rain. t(3713)=-164.6, P<0.05 

Effect size (Cohen’s d)=-1.28 

F-Test 
Speed variability is higher in Heavy Rain 

F1,9969,12454=0.990, p<0.05 

Speed variability is higher in Heavy Rain 

F1,30006,46129=5.5, p<0.05 

Z-Test 

Proportion of violation ≥ 10 km/h above the 

speed limit is significantly higher in Clear 

Weather. Z=206.6731 , P<0.05 

Proportion of violation ≥ 10 km/h above the 

speed limit is significantly higher in Clear 

Weather. Z=50.47, P<0.05 

Notes:  Analysis was performed for one-minute aggregation level and 95% confidence interval.  

Matched data have equal trips distance, different travel times are due to lower speed because of weather  

 

Table 20 Preliminary Analysis for the NDS Instrumented Vehicles-Acc/Dec (102) 

Acceleration/ 

Deceleration (g) 

(Positive 

columns= 

Acceleration) 

Statistical 

Tests 

Free-Flow Traffic (Matched Trips) Comparison within Trips 

Heavy Rain Matched Clear Heavy Rain Matched Clear 

Acc Dec Acc Dec Acc Dec Acc Dec 

Average 0.0263 -0.0266 0.0253 -0.0276 0.0213 -0.0282 0.0158 -0.0162 

SD 0.0181 0.0214 0.0184 0.0225 0.0157 0.0245 0.0160 0.0185 

Min. 0.0029 -0.3132 0.0015 -0.4321 0.0015 -0.2842 0.0029 -0.2610 

Max. 0.2059 -0.0029 0.1769 -0.0015 0.1769 -0.0015 0.1624 -0.0029 

Median 0.0232 -0.0232 0.0203 -0.0232 0.0174 -0.0218 0.0116 -0.0087 

t-Test 

Average Acc. is significantly higher in Heavy 

Rain and  avg. Dec. is higher in Clear Weather 

Acc: t(11232)=8.64, P<0.05,  

Effect size (Cohen’s d)=0.05 

Dec: t(8199)=6.49, P<0.05,  

Effect size (Cohen’s d)=0.04 

Average Acc./Dec. is significantly higher in 

Heavy Rain 

Acc: t(3223)=33.68, P<0.05,  

Effect size (Cohen’s d)=0.37 

Dec: t(2199)=-45.51, P<0.05,  

Effect size (Cohen’s d)=-0.61 

F-Test 

Acc./Dec. variability is higher in Clear 

Weather 

Acc: F1,7251,5258=0.97, p<0.05  

Dec: F1,4256,4031=0.90, p<0.05 

Acc./Dec. variability is higher in Clear 

Weather 

Acc: F1,1507,2520=0.95, p<0.05 

Dec: F1,1228,1633=1.75, p<0.05 

Z-Test 

Proportions of Dec. lower than -0.3g is 

significantly greater in Clear Weather. No 

Acc. were found higher than +0.3g 

Dec: Z=-4.2732, P<0.05 

No Acc./ Dec. were found higher/lower 

than ±0.3g 

Notes:  Analysis was performed for one-minute aggregation level and 95% confidence interval.  

Matched data have equal trips distance, different travel times are due to lower speed because of weather  
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Table 21 Preliminary Analysis for the NDS Instrumented Vehicles-Yaw Rate (102) 

Yaw Rate (deg/s) 

(negative sign=left 

rotation) 

Statistical 

Tests 

Free-Flow Traffic (Matched Trips) Comparison within Trips 

Heavy Rain Matched Clear Heavy Rain Matched Clear 

Acc Dec Acc Dec Acc Dec Acc Dec 

Average 0.84 -0.97 0.89 -0.8 1.01 -0.97 0.64 -0.61 

SD 0.73 0.65 0.71 0.59 0.88 0.86 0.41 0.46 

Min. 0.33 -8.78 0.33 -3.9 0.16 -8.78 0.16 -4.55 

Max. 6.83 -0.33 5.85 -0.33 10.08 -0.16 3.25 -0.16 

Median 0.65 -0.65 0.65 -0.65 0.65 -0.65 0.49 -0.33 

t-Test 

Yaw rate (right rotation) is significantly higher 

in Clear Weather—no significant difference in 

left rotation. 

Right rotation: t(2515)=-6.4, P <0.05 

Effect size (Cohen’s d)=-0.08 

Left rotation: t(3022)=0.3, P>0.05 

Effect size (Cohen’s d)=0.003 

Yaw rate is significantly higher in  Heavy 

Rain 

Right rotation: t(1010)=34.62, P <0.05,  

Effect size (Cohen’s d)=0.69 

Left rotation: t(1793)=-41.62, P<0.05 

Effect size (Cohen’s d)=-0.62 

F-Test 

Yaw rate variability is higher in Heavy Rain 

Right rotation: F1,2704,1258=1.05, p<0.05 

Left rotation: F1,4504,1586=1.2, p<0.05 

Yaw rate variability is higher in Heavy Rain 

Right rotation: F1,755,958=4.64, p<0.05 

Left rotation: F1,1229,1505=3.48, p<0.05 

Notes:  Analysis was performed for one-minute aggregation level and 95% confidence interval.  

Matched data have equal trips distance, different travel times are due to lower speed because of weather  

 

 

Table 22 Preliminary Analysis for the NDS Instrumented Vehicles-Lane Offset (102) 

Lane Offset (cm) 

Statistical 

Tests 

Free-Flow Traffic (Matched Trips) Comparison within Trips 

Heavy Rain Matched Clear Heavy Rain Matched Clear 

Acc Dec Acc Dec Acc Dec Acc Dec 

Average 24.4 -23.04 62.26 -71.92 39.55 -45.99 34.56 -43.39 

SD 22.55 26.87 130.79 135.39 76.44 83.33 65.58 75.06 

Max 964.95 0 999.86 -0.01 838.83 -0.01 955.04 -999.59 

Min 0 -590.8 0.05 -999.12 0.05 -998.61 0.05 -0.04 

Median 20.32 -17.02 18.66 -29.08 16.85 -26.94 15.54 -26.88 

t-Test 

Avg. lane offset to the right and left from the 

lane center is significantly higher in Clear 

Weather 

Right: t(1450)=-34.23, P<0.05 

Effect size (Cohen’s d)=-0.57 

Left: t(4113)=66.80, P<0.05 

Effect size (Cohen’s d)=0.66 

Avg. lane offset to the right and left from 

the lane center is significantly higher in 

Heavy Rain 

Right: t(1493)=4.91, P<0.05 

Effect size (Cohen’s d)=0.08 

Left: t(4200)=-3.78, P<0.05 

Effect size (Cohen’s d)=-0.03 

F-Test 

Lane offset to the right and left variability is 

higher in Clear Weather 

Right: F1,3424,1415=0.02, p<0.05 

Left: F1,2494,3649=0.03, p<0.05 

Lane offset variability is higher in Heavy 

Rain 

Right: F1,810,1392=1.36, p<0.05 

Left: F1,2174,3650=1.23, p<0.05 

Notes:  Analysis was performed for one-minute aggregation level and 95% confidence interval.  

Matched data have equal trips distance, different travel times are due to lower speed because of weather  
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Table 23 Preliminary Analysis for the NDS Instrumented Vehicles-Headway (102) 

Headway(sec) 

Statistical 

Tests 

Free-Flow Traffic (Matched Trips) Comparison within Trips 

Heavy Rain Matched Clear Heavy Rain Matched Clear 

Average 2.17 2.01 1.98 2.02 

SD 1.00 1.12 1.16 1.14 

Max 7.84 6.65 7.58 6.68 

Min 0.16 0.08 0.12 0.15 

Median 2.10 1.99 1.83 1.81 

t-Test 

Headway is significantly higher in Heavy Rain 

t(8268)=-21.93, P<0.05 

Effect size (Cohen’s d)=-0.15 

No significant difference 

F-Test 
Headway variability is higher in Clear 

Weather. F1,4030,4303=1.04, p<0.05 
No significant difference 

Notes:  Analysis was performed for one-minute aggregation level and 95% confidence interval.  

Matched data have equal trips distance, different travel times are due to lower speed because of weather  

 

As can be seen in Table 19, a t-test indicated that the average speed in heavy rain under the free-

flow traffic conditions was significantly 10.14 mph (16.32km/hr) lower than in clear weather and 

free-flow traffic conditions. Speed in free-flow conditions is important for variable speed limit 

(VSL) application because the speed choice here is not affected by the interaction with traffic. It 

was also found that speeds have higher variability during heavy rain in comparison with clear 

conditions under free-flow traffic, which could be an indication of increased safety risk (30).  

The acceleration/deceleration variable was examined (Table 20), and ±0.3g 

acceleration/deceleration rates were set as a threshold to identify aggressive braking/acceleration 

events (106). The preliminary analysis showed that while heavy rain has a wider range of 

acceleration and statistically has a higher average, the average deceleration was found to be 

statistically higher in the matching clear weather conditions. The variability of acceleration and 

deceleration and the proportions of deceleration that were lower than -0.3g were found to be greater 

in clear weather conditions. These findings coupled with the observed reduction in speed during 

heavy rain indicate that drivers compensate for the slippery surface conditions by not decelerating 

by rates greater than -0.3g. 

The lane offset variable in the NDS data is estimated using machine vision techniques. Lane 

offset is an indication of either a lane change or a deviation from the lane. Lane change is 

defined as an intended and substantial lateral shift of a vehicle (107). Lane change could be 

modeled using multiple variables: turn signal, steering angle, yaw rate, and machine vision lane 

offset. Although lane change is not the main focus of this section, distinguishing lane change 

from lane wandering is important to understand driver behavior in heavy rain condition. Utilizing 

time-series and video data, lane changes were separated from lane wandering.  

A criterion for lane offset values within ±0.3 meters was set to flag lane wandering events (Table 

22), especially when these events varied to the right and left over a short duration of time. 

Continuous and steady lane offset within a threshold greater than ±0.3 meters to ±9.5 meters in 

one direction was considered as a full lane change. A past NDS study indicated that using a 

threshold of ±0.1 meters resulted in a higher than expected number of lane departures (108). 
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Preliminary analysis indicated that the number of lane changes is higher in clear weather 

conditions while lane wandering was found to be significantly higher in heavy rain.  

Yaw rate and steering angle are additional variables that could be used to analyze lane 

maintenance. Unfortunately, steering wheel position was only available for a fraction of vehicles 

(only two trips included steering angle data). Yaw rates were analyzed (table Table 21) for 

events with lane offset within ±0.3 meters where there were no lane changes. Yaw rates were 

significantly higher in heavy rain, which, as mentioned earlier, might indicate frequent evasive 

maneuvers to mitigate an increased risk. On the one hand, average headways (Table 23) were 

found to be significantly higher in heavy rain compared to clear weather conditions under free-

flow traffic. On the other hand, the variability of headways was found to be significantly higher 

in clear conditions. This could be explained by the fact that drivers tend to compensate for the 

increased risk due to the limitation in visibility by maintaining longer headway times. 

Analyzing the NDS time-series data in conjunction with video data revealed that the estimated 

NDS machine vision lane offset is noisy but still reliable in heavy rain weather condition.The 

min/max values for the lane offset also revealed a very interesting finding: drivers tend to change 

multiple lanes (2–3 lanes) during clear weather condition versus a single lane change in heavy 

rain conditions. Controlling for entry and exit of the freeway maneuvers, lane changes that 

occurred in heavy rain were mostly evasive maneuvers to mitigate an increased risk. From video 

observations, it was found that drivers opted out of speed reduction behind a slower vehicle more 

often than changing lanes.  

Additional analyses were conducted on an individual (no matching) seven NDS trips that were 

identified to have both clear and heavy rain conditions within the same trip. All seven trips were 

in the free-flow traffic conditions. There was an agreement across the seven trips that speeds 

were reduced significantly with a higher standard deviation in heavy rain than in clear 

conditions. Also, the acceleration/deceleration and lane change/maintenance were affected. The 

number of braking, decelerations, and accelerations were significantly higher in heavy rain than 

in the clear portion of the trips. 

There were 44 and 22 braking events in heavy rain and clear weather conditions, respectively. 

High variability in yaw rate might indicate either too many lane changes or poor lane 

maintenance. Although the number of lane changes was very limited in heavy rain compared to 

clear conditions, the high variability in yaw rate during heavy rain suggested worse lane 

maintenance capabilities than in the clear condition. 

Lane-Keeping Model Results and Discussion 

To confirm the suitability and fitness of the model, the log likelihood ratio and the pseudo R2 

were used. Table 24 shows the results of the model; the Likelihood Ratio (LR) test statistic falls 

into the rejection area (p-value < 0.05), which means that the overall explanatory variables of the 

model have significant influence on the response at a statistical significance level of 95 percent. 

Only statistically significant variables were retained in the final models.  
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Table 24 Logistic Regression Model for lane-keeping ability in Different Weather 

Conditions (102) 

Analysis of Maximum Likelihood Estimates 

Parameter  DF Estimate Standard 

Error 
Wald 

Chi-

Square 

Odds 

Ratio 

P value 95% Confidence Limits 

Intercept  1 -0.4630 0.4621 1.0037 - 0.3164 - - 

Weather Clear  - - - - - - - 

Light Rain 1 -0.7671 0.8352 0.8435 0.464 0.3584 0.090 2.387 

Heavy Rain 1 1.3389 0.5554 5.8117 3.815 0.0159 1.284 11.331 

Speed Limit Below 90 

km/hr  

 - - - - - - - 

Above 90 

km/hr  

1 -2.7258 1.1092 6.0395 0.065 0.0140 0.007 0.576 

Traffic Free-Flow  - - - - - - - 

Traffic 1 -1.5778 0.5387 8.5792 0.206 0.0034 0.072 0.593 

  

As can be seen in Table 24, heavy rain has a statistically positive effect on SDLP. It means that 

standard deviation of lane position is more likely to be higher in heavy rain condition. 

Particularly, driver lane-keeping ability would be reduced (SDLP would be increased) by 

increasing the precipitation intensity. This may be attributed to the shorter sight distance and also 

low visibility of lane marking in heavy rain condition. This finding is in agreement with other 

previous studies, showing the negative effect of adverse weather on drivers’ performance (46, 

109). More clearly, drivers in heavy rain condition are 3.8 times more likely than clear weather 

to have higher SDLP (OR=3.8). It is also shown that driving in light rain condition does not have 

any effect on lane-keeping ability.  

Interestingly, maximum posted speed limit was found to be significant with a negative 

coefficient in the developed lane-keeping model. This might be due to the fact that drivers pay 

more attention to the road ahead considering the higher speed. It is worth mentioning that road 

segments with higher speed limits might have better geometry design and sight distance in 

comparison with segments with lower speed limit. Obtained negative association between lane-

keeping and posted speed limit could be because of the mentioned advantages of segments with 

higher speed limits that can compensate for the negative effects of rainy weather condition to 

some extent. Driving in a segment with higher speed limit does not necessarily mean that the 

driver has higher speed. More specifically, drivers who are driving in road segments with posted 

speed limit less than 50 mph (90 km/hr) are 15 times more likely to have higher SDLP in 

comparison with those who are driving in segments with posted speed limit above 50 mph (90 

km/hr) (OR=0.065). It is known that drivers reduce their speed during adverse weather 

conditions (110). Lower speed can enhance drivers’ performance especially at the start of the 

rain as the surfaces are most slippery because of the oil and dust that have not washed away mix 
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with the moisture. Moreover, lower speed can increase the headway spaces providing more time 

to prepare for the appropriate maneuver as driving becomes risky with low visibility.  

Traffic conditions were found to be statistically significant as expected. The negative sign 

depicts the fact that by increasing traffic congestion, drivers have less ability to swerve, change 

lane, and generally are forced to have better lane-keeping. More clearly, drivers who drive in a 

free flow condition are 4.8 times more likely to have higher SDLP in comparison with those who 

are driving in traffic congestion condition (OR=0.206). 

Summary  

Descriptive statistics were used to understand the difference between drivers’ behavior in clear 

and heavy rain weather conditions, and logistic regression was utilized to identify the main 

contributing factors affecting drivers’ lane-keeping ability in different weather conditions.  

Based on the obtained results from the performed descriptive analysis, heavy rain had a wider 

range and a higher average of acceleration; however, average deceleration was found to be 

higher in matching trips in clear weather condition. The number of lane changes is higher in 

clear weather; however, lane wandering is higher in heavy rain conditions. Yaw rates and 

average headways were found to be statistically higher in heavy rain in comparison with clear 

weather conditions. Acceleration, deceleration, speed, headway, and lane-keeping can be used as 

indicators of safety. Weather, speed limit, and traffic conditions were found to be significant 

contributing factors in the developed lane-keeping model.  

Analyzing drivers’ behavior at a microscopic level has become an important topic for different 

tasks in transportation engineering. The Naturalistic Driving Study (NDS) data in particular may 

help in developing driving models that could be applied to different areas (111–113): i) 

performing safety analyses based on individual driver data, ii) calibration of driving behavior 

models to update microscopic models for traffic simulation, specifically in various traffic and 

weather conditions, iii) developing control logics for Advanced Driving Assistance Systems 

(ADAS), and Connected and Automated Vehicles (CAV). While the results from this analysis 

may improve our understanding about lane-keeping behavior in heavy rain at a microscopic 

individual level, the results may also help in developing better Lane Departure Warning (LDW) 

systems. The NDS data may address limitations of these systems during adverse weather 

conditions.  Individual drivers’ data may provide more insights into drivers’ behavior and 

performance in different traffic and weather conditions than the commonly used macroscopic 

level of speed, volume and occupancy; the understanding gained from these data may help in 

updating microsimulation models.  
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Lane-keeping Behavior Considering Driver Demographics and Roadway Characteristics: 

Using Non-parametric MARS Modeling Technique 

 

One of the most unpredictable factors in the driver, vehicle and roadway triangle is the driver 

behavior (114, 115). In fact, driver behavior might be changed while driving considering the 

physical conditions as well as distractions provided by in-vehicle technologies etc. Lane-keeping 

behavior has been identified as one of the principal behavioral-performance factors with a 

broader implication of driving task. The effect of distracted driving on lane keeping ability has 

been investigated in previous studies (15, 83). Even though the results from these studies are 

extremely important and show the effect of different distractions on the lane-keeping ability, the 

weather impact on lane-keeping ability has not been studied exclusively in previous studies. 

Considering the increase in use of the Naturalistic Driving studies (NDS) in recent years, 

researchers have a better opportunity to study driver performance and behavior at a microscopic 

level. The main goal of this section is to investigate driver lane-keeping ability using more NDS 

data and at a higher resolution (1-min chunks), as well as advanced non-parametric modeling 

technique to better understand driver lane-keeping ability in heavy rain and slippery road 

conditions. 

Data Preparation 

Of the received 2,881 trips in rain, 196 trips were randomly selected for further analysis in this 

chapter. In addition, 392 matching trips in clear weather conditions (2:1 matching ratio) have 

been fully processed in this chapter. The selected NDS trips involved 141 drivers between 19 and 

89 years of age with the majority of the drivers in the young age group (19 to 29 years old). A 

total of 12,320 one-minute segments – equivalent to nearly 205 hours of driving have been fully 

processed for this chapter (116).  

Methodology 

Two lane-keeping models were developed using the logistic regression and Multivariate 

Adaptive Regression Splines (MARS) to better understand factors affecting driver lane-keeping 

ability in clear and rainy weather conditions. Advantages of using MARS include the capacity to 

intake continuous response variables, promising predictive power, and overcoming the black-box 

limitations (116). 

Multivariate Adaptive Regression Splines (MARS) 

MARS can be defined as a piecewise, multivariate regression that can consider the complex 

relationships among variables. This model was introduced by Friedman (1991) (117). In the 

MARS model, the space of predictors is divided into multiple knots, and a spline function is 

fitted between those knots (118).  Basis functions (BFs) are those elements that can be used to fit 

a MARS model. Each basis function can be a main function or an interaction of different 

variables. Equation 9 shows a general form of the MARS model (119, 120). 
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Where ŷ  can be defined as the predicted response variable, 0 is the coefficient of the constant 

basis function, m  is the coefficient of the mth basis function, (x)m is the mth basis function, and 

M is the total number of basis functions in the developed MARS model. 

There are two main steps to fit a MARS model. These two steps can be summarized as first, 

forward-stepwise regression selection and second, backward-stepwise elimination  procedure 

(121). In the constructive phase, the initial model starts with just a constant, then the model 

searches for a possible variable-knot combination, and the improvement of the model is 

measured. The process would be repeated to identify the best variable-knot combination. The 

search process will continue until reaching the maximum number of basis functions. In the 

elimination phase, MARS identifies a BF to drop based on residual sum of squares criteria. After 

refitting the model, another BF is selected to drop based on the same criteria. The process is 

repeated until all the BFs have been deleted. Finally, the result of the backward-stepwise 

elimination procedure is a distinctive series of candidate models (121). The final selection of the 

model would be based on the generalized cross-validation (GCV) criterion as shown in Equation 

10 (119–121): 
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Equation 10                          

 

where N is the number of observations; iy  is the response for observation i; and ( )C M is a 

complexity penalty function. To be specific, in Equation 10, the numerator represents the lack of 

fit on the model with M basis function and the denominator contains a term to consider a penalty 

for model complexity, which is ( )C M . This term is related to the number of estimated 

parameters in the model (121).  

Logistic Regression 

Logistic regression is a commonly used model in traffic safety and operation studies. For more 

information about the logistic regression please see the previous section or (122).  

Analysis 

Matching trips in rain and clear weather were required, specifically for comparative analysis. As 

mentioned earlier, weather conditions may not be consistent within a trip. Therefore, considering 

the entire clear trip as matched to a particular rain trip would not provide appropriate results. 

Therefore, the data were further reduced by importing the coordinates of the rain and clear trips 

into the ArcGIS software and eliminating non-matching segments. Removing the non-freeway, 

non-matching segments resulted in 4,434 one-minute matching segments (486 segments in light 

rain, 1090 in heavy rain and 2,858 segments in clear weather) in free flow speed conditions, 

which was equivalent to nearly 74 hours of driving time and 7,334 kilometers. The summary 

statistics and various statistical tests for the variables of interest including speed, 
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acceleration/deceleration, yaw rate, and lane offset considering the matched trips in clear and 

rainy weather conditions are presented in Table 26 and Table 27. Preliminary analysis indicated 

that the number of lane changes is higher in clear weather conditions while lane wandering was 

found to be significantly higher in heavy rain. Table 25 is a summary of the different variables 

used to set lane-keeping models. In addition Table 26 and Table 27 provide the comparison of 

key variables in light rain, heavy rain and their matching trips in clear weather conditions.  

Table 25 Data Description (123) 

Variable Description Type Source Definition 
Assigned 

Code 

Reference 

Level 

Response Variable: 

SDLP 

Standard deviation of lane 

position offset 
Distance to the left or right of the 

center of the lane based on 

machine vision 

Categorical 
Naturalistic driving time 

series data 

SDLPO<=20 cm 1  

SDLPO>20 cm  2 * 

Explanatory Variables: 

Environmental Factors 

Weather 

Conditions 

Predominant weather conditions 

in 1-min video observation 
Categorical Video Observation 

Clear 1 * 

Rain 2  

Heavy Rain 3  

Speed 

Limit 

Predominant Posted Speed limit  

in 1-min video observation 
Binary 

Roadway Information 

Database (RID) 

<=60 mph 

(median of speed 

limit: 60) 

0 
 

>60 mph 1 

Traffic 

Conditions 

Predominant Traffic conditions 

(LOS)  in 1-min video 
observation 

Binary Video Observation 
A & B 1  

C-F 2 * 

Demographics 

Gender 
The gender the participant 

identifies with 
Binary 

Electronic online 
questionnaire administered 

during participant in-

processing 

Male 1 * 

Female 2  

Age 

 

The age group corresponding to 

the driver’s birthdate. 

Categorical 

 

Electronic online 
questionnaire administered 

during participant in-

processing 

Young<25 1 * 

Middle(25-44) 2  

Old>44 3  

Education 
The participant highest completed 

level of education 
Categorical 

Electronic online 

questionnaire administered 
during participant in-

processing 

Below High 

School Diploma 
1 * 

Above High 
School Diploma 

2  

 

Driver 

Mileage 
Last Year 

Details  

The approximate number of miles 

the participant drove last year 
Categorical 

Electronic online 
questionnaire administered 

during participant in-

processing 

Less than 

<=12,000 
1 * 

>12000 2  

Driving 

Experience 

Number of years driving 

experience 
Categorical 

Electronic online 

questionnaire administered 

during participant in-
processing 

Less than 3 

years.  
1  

More than 3 
years 

2 * 

Roadway Characteristics 

Curve  

Whether the majority of 1-min 

driving was driven on tangent or 

curve 

Binary RID 

Tangent 1 * 

Curve 2  

Number of 

lanes 

Number of lanes that the majority 

of the 1-min driving was travelled 
on  

Count RID - - - 
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Table 26. Preliminary Analysis using the Matched Trips in Light Rain 

 
Statistical 

Test 

Free-Flow Traffic 

Light Rain Clear 

  Speed 
% Speed Reduction 

from Speed Limit 
Speed 

% Speed Reduction from 

Speed Limit 

S
p

e
e
d

 (
k

m
/h

r
.)

 

   

Average 98.199 - 1.846 102.881 - 6.213 

SD 13.322 12.673 12.271 10.840 

Min. 40.653 - 37.346 50.270 - 46.888 

Max. 130.744 55.646 137.448 47.595 

Median 99.302 - 3.339 103.077 - 6.164 

t-test 
Average speed is significantly higher in matched clear. t(1964) = -9.55, P<0.05 

Effect size (Cohen’s d) = -0.37 

F-test Speed variability is significantly higher in light rain. F1053,2094 = 1.18, P<0.05 

Z-test 
No significant difference between the proportion of speeding ≥ 10 km/h in light rain and clear weather. 

Z = -1.56, P>0.05 

A
c
c
el

e
ra

ti
o

n
/ 

  
D

e
c
el

er
a

ti
o

n
(g

) 

 Acceleration Deceleration Acceleration Deceleration 

Average 0.014 -0.015 0.015 -0.020 

SD 0.013 0.016 0.014 0.044 

Min. 0.000 -0.111 0.000 -0.458 

Max. 0.097 0.000 0.090 0.000 

Median 0.011 -0.011 0.012 -0.012 

t-test 

Average acceleration is significantly higher in clear weather. t(1656) = -1.64, P<0.05 

Effect size (Cohen’s d) = -0.08 
Average deceleration is significantly higher in clear weather. t(1448) = 3.5, P<0.05 

Effect size (Cohen’s d) = 0.14 

F-test 
No significant difference between average acceleration variability in light rain and clear weather. 

F1073,583 = 1.06, P>0.05 

Deceleration variability is significantly higher in clear weather. F1035,505 = 7.71, P<0.05 

z-test No acceleration/ deceleration were found higher/lower than ± 0.3g 

Y
a

w
 R

a
te

, 
n

eg
a

ti
v

e
 s

ig
n

 =
 l

e
ft

 

r
o

ta
ti

o
n

 (
d

eg
./

s)
 

 Positive Negative Positive Negative 

Average 0.345 -0.719 0.512 -0.687 

SD 0.345 2.075 0.895 2.123 

Min. 0.001 -21.377 0.001 -22.231 

Max. 2.400 0.000 7.058 -0.002 

Median 0.251 -0.318 0.267 -0.267 

t-test 

Average right rotation is significantly higher in clear weather. t(926) = -4.13, P<0.05 

Effect size (Cohen’s d) = -0.22 

No significant difference between average left rotation in light rain and clear weather. t(2106) = -0.34, P>0.05 
Effect size (Cohen’s d) = -0.015 

F-test 
Right rotation variability is significantly higher in clear weather. F650,296 = 6.74, P<0.05 

No significant difference between left rotation variability in light rain and clear weather. F1332,774 = 1.05, P>0.05 

L
a

n
e
 O

ff
se

t 
(c

m
) 

 Positive Negative Positive Negative 

Average 20.790 -17.672 18.401 -21.713 

SD 21.390 19.120 16.316 22.070 

Min. 0.462 -276.155 0.017 -266.983 

Max. 136.296 -0.102 121.291 -0.001 

Median 16.299 -11.165 14.787 -16.199 

t-test 

Average lane offset to the right is significantly higher in light rain. t(666) = 1.93, P<0.05 

Effect size (Cohen’s d) = 0.13 

Average lane offset to the left is significantly higher in clear weather. t(1709) = 4.31, P<0.05 
Effect size (Cohen’s d) = 0.19 

F-test 
Lane offset to the right variability is significantly higher in light rain. F398,694 = 1.72, P<0.05 

Lane offset to the left variability is significantly higher in clear weather. F1280,733 = 1.33, P<0.05 
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Table 27. Preliminary Analysis using the Matched Trips in Heavy Rain 

 
Statistical 

Test 

Free-Flow Traffic 

Heavy Rain Clear 

  Speed 
% Speed Reduction 

from Speed Limit 
Speed 

% Speed Reduction from 

Speed Limit 

S
p

e
e
d

 (
k

m
/h

r
.)

 

   

Average 93.711 - 0.089 101.553 - 8.939 

SD 11.023 12.795 9.186 9.697 

Min. 51.092 - 34.673 72.384 - 35.280 

Max. 128.542 49.458 130.786 21.260 

Median 93.668 - 0.740 100.966 - 9.739 

t-test 
Average speed is significantly higher in matched clear. t(899) = -12.99, P<0.05 

Effect size (Cohen’s d) = - 0.79 

F-test Speed variability is significantly higher in heavy rain. F483,745 = 1.44, P<0.05 

Z-test 
No significant difference between the proportion of speeding ≥ 10 km/h in heavy rain and clear weather. 

Z = - 0.31, P>0.05 

A
c
c
el

e
ra

ti
o

n
/ 

  
D

e
c
el

er
a

ti
o

n
(g

) 

 Acceleration Deceleration Acceleration Deceleration 

Average 0.019 -0.014 0.021 -0.020 

SD 0.017 0.015 0.020 0.019 

Min. 0.000 -0.072 0.000 -0.105 

Max. 0.121 0.000 0.093 0.000 

Median 0.014 -0.010 0.014 -0.015 

t-test 

No significant difference between average acceleration in heavy rain and clear weather. t(648) = -1.43, P>0.05 
Effect size (Cohen’s d) = - 0.11 

Average deceleration is significantly higher in clear weather. t(509) = 4.01, P<0.05 
Effect size (Cohen’s d) = 0.33 

F-test 
Acceleration variability is significantly higher in clear weather. F380,281 = 1.37, P<0.05 

Deceleration variability is significantly higher in clear weather. F366,203 = 1.65, P<0.05 

z-test No acceleration/ deceleration were found higher/lower than ± 0.3g 

Y
a

w
 R

a
te

, 
n

eg
a

ti
v

e
 s

ig
n

 =
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e
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o
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o
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 (
d
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 Positive Negative Positive Negative 

Average 0.424 -1.591 0.425 -0.501 

SD 0.381 2.269 0.424 0.458 

Min. 0.004 -7.631 0.001 -2.578 

Max. 2.215 -0.001 1.883 -0.001 

Median 0.301 -0.479 0.269 -0.368 

t-test 

No significant difference between average left rotation in heavy rain and clear weather. t(330) = -0.03, P>0.05 

Effect size (Cohen’s d) = -0.003 
Average left rotation is significantly higher in heavy rain. t(348) = -8.60, P<0.05 

Effect size (Cohen’s d) = -0.72 

F-test 
No significant difference between Left rotation variability in heavy rain and clear weather. F234,144 = 1.24, P>0.05 

Left rotation variability is significantly higher in heavy rain. F329,459 = 24.53, P<0.05 

L
a

n
e
 O

ff
se

t 
(c

m
) 

 Positive Negative Positive Negative 

Average 15.377 -16.747 17.721 -17.631 

SD 11.651 21.887 20.305 17.513 

Min. 0.095 -224.663 0.191 -139.816 

Max. 74.906 -0.308 227.831 -0.049 

Median 13.568 -11.480 14.136 -11.963 

t-test 

Average lane offset to the right is significantly higher in clear weather. t(521) = -1.7, P<0.05 

Effect size (Cohen’s d) = -0.136 

Average lane offset to the left is significantly higher in clear weather. t(412) = 0.52, P<0.05 
Effect size (Cohen’s d) = 0.046 

F-test 
Lane offset to the right variability is significantly higher in clear weather. F317,224 = 3.04, P<0.05 

Lane offset to the left variability is significantly higher in heavy rain. F232,376 = 1.56, P<0.05 
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Lane-keeping Model Results 

Previous studies showed that increasing the number of interactions in MARS may increase the 

model complexity; therefore, the applicability of the model and interpretability of the results 

might be decreased (119, 120). Hence, the maximum order of interactions was defined as two in 

this study.  Table 28 and Table 29 present the developed MARS and logistic regression models 

for driver lane-keeping ability. 

 

Table 28 Driver Lane Keeping Model Using MARS (123) 

BF Basis function 

Basis 

function 

description 

Coefficient 
Standard 

Error 
P-value 

Intercept Intercept Constant 0.103 0.017 0.00000 

BF1 (Weather in ( 3 ) ) Main effect 0.028 0.039 0.0001 

BF2 (Weather in ( 2, 1 ) ) Not sig. Not sig. Not sig. Not sig. 

BF3 max( 0, Number of lanes- 2) * BF1 Interaction 0.157 0.022 0.00000 

BF5 ( TRAFFIC_CAT in ( 1 ) ) * BF2; Interaction 0.064 0.013 0.00000 

BF7 (Age in ( 1 ) ) * BF2 Interaction -0.073 0.014 0.00000 

BF9 (Education level in ( 2 ) ) * BF1 Interaction 0.146 0.033 0.00001 

BF11 max( 0, Number of lanes- 2) * BF2 Interaction 0.063 0.015 0.00001 

BF13 (Speed limit in (below 60 mph) ) * BF1 Interaction 0.132 0.033 0.00005 

BF15 (Education level in ( 2 ) ) * BF2 Interaction -0.032 0.013 0.01401 

BF19 max( 0, Number of lanes- 3)  Not sig. Not sig. Not sig. Not sig. 

BF20 max( 0, 3- Number of lanes) Not sig. Not sig. Not sig. Not sig. 

BF21 ( Driving experience in ( 2 ) ) * BF19 Interaction -0.096 0.020 0.00000 

BF27 (Speed limit in (below 60 mph) ) * BF20 Interaction 0.045 0.011 0.00006 

 

Analyzing the relative importance of variables from the MARS model revealed that weather 

condition was the most important variable affecting lane-keeping ability, such that it is 3 times 

more important than the second variable. It indicates that weather conditions play a key role in 

driver lane-keeping ability (123). This finding is consistent with the previous study that 

demonstrated the effect of weather conditions on driver behavior in general and lane maintaining 

in specific (102). The second important variable is speed limit and the third one is traffic 

conditions. In addition, Table 4 reveals that age, driving experience, and number of lanes are 

other important factors affecting drive lane-keeping ability. 
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Table 29 Estimation of Logistic Regression Model for Lane Keeping Behavior (116) 

Parameter Description Estimate 
Standard 

Error 

Wald 

Chi-

Square 

Pr > ChiSq 
Odds 

ratio 

Intercept - - -1.58 0.31 25.88 <.0001 0.206 

Weather Rain - -0.86 0.22 14.53 0.0001 0.425 

Weather 
Heavy 

Rain 
- 0.79 0.25 9.82 0.0017 2.203 

Speed Limit >60 mph - -0.27 0.11 5.62 0.0177 0.764 

Age 
Middle 

Age 
- 0.31 0.17 3.58 0.0584 1.37 

Gender Female  0.58 0.27 4.72 0.0298 1.785 

Traffic Cond. LOS A-B - 0.25 0.06 20.95 <.0001 1.288 

Driver Mileage Last Year 
>12000 

miles 
- -0.12 0.06 4.40 0.0358 0.885 

Interaction between Weather 

cond. and Curve 

Light 

Rain 
Curves 0.26 0.15 3.00 0.083 1.298 

Interaction between Weather 

Cond. and Traffic Cond. 

Light 

Rain 

LOS 

A-B 
0.32 0.08 15.96 <.0001 1.373 

Interaction between Weather 

Cond. and Traffic Cond. 

Heavy 

Rain 

LOS 

A-B 
-0.29 0.09 11.15 0.0008 0.747 

Interaction between Weather 

cond. and Age 

Heavy 

Rain 

Older 

Drivers 
-0.29 0.16 3.42 0.0645 0.747 

Interaction between Weather 

cond. and Driver Mileage 

Last Year 

Light 

Rain 

>1200

0 

miles 

-0.19 0.08 6.63 0.01 0.824 

Interaction between Weather 

cond. and Gender 

Heavy 

Rain 
Female 0.13 0.08 2.74 0.098 1.141 

Interaction between Weather 

cond. and Number of Lanes 

Heavy 

Rain 
- 0.21 0.07 10.51 0.0012 1.238 

Interaction between Weather 

cond. and Speed Limits 

Light 

Rain 

>60 

mph 
0.31 0.17 3.40 0.065 1.367 

Interaction between Weather 

cond. and Speed Limits 

Heavy 

Rain 

>60 

mph 
-0.29 0.16 3.10 0.0783 0.749 

Interaction between Gender 

and Driving Experience 
Female 

Less 

than 3 

years. 

0.60 0.27 5.12 0.0236 1.827 

Interaction between Gender 

and Driver Mileage Last 

Year 

Female 

>1200

0 

miles 

0.20 0.05 18.64 <.0001 1.219 

Model Fit Statistics: 

AIC 

SC 

Log-likelihood at convergence 

Number of observations 

 

3905.016 

4118.405 

-4236.771 

4753 

Hosmer and Lemeshow Goodness-of-Fit Test Chi square = 10.1067,8, p = 0.258. 
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Logistic regression results indicated that heavy rain has a significant effect on driver lane-

keeping ability, which could be due to the shorter sight distance and low visibility of lane 

marking in heavy rain conditions. This finding is in agreement with previous studies, showing 

the negative effect of adverse weather on driver performance in general and lane-keeping ability 

in (46, 60, 109). The effect of maximum-posted speed limits on driver lane-keeping ability was 

found to be significant. This could be due to drivers more attention to the road ahead in higher 

speeds and better geometry design and sight distance (102). In addition, driver age was a 

significant factor in the lane-keeping model. To be specific, middle-aged drivers were 1.4 times 

more likely to have worse lane-keeping ability in comparison with young drivers.    

Traffic conditions were found to have a significant effect on lane-keeping ability.  This is not 

surprising as by increasing traffic congestion, drivers are limited and do not have enough space for 

maneuvers including swerve and lane change. In other words, drivers are forced to have a better 

lane keeping in congested traffic. The results provided in Table 5 reveals that drivers who drove 

in a free flow condition were 1.3 times more likely to have higher SDLP (worse lane keeping) in 

comparison with those who were driving in congested traffic. 

Driver mileage last year was found to be a statistically significant factor that affect driver lane-

keeping ability.  More specifically, those drivers that drove more than 12,000 miles last year were 

more likely to have a better lane-keeping in comparison with drivers that drove less than 12,000 

miles. This variable can be an index for driving experience; therefore, the result shows the 

significant effect of driving experience on lane-keeping ability.  

Summary  

The results from the MARS model revealed that weather conditions were not linearly associated 

with the SDLP. In addition, among all the explanatory variables considered in the model, 

weather conditions turned out to be the most important variable affecting lane-keeping 

performance.  

As the importance of analyzing driver behavior in real-time at a trajectory level is becoming 

more important for various tasks in transportation engineering, the NDS data may help in not 

only providing a reliable source of trajectory-level driver-behavioral and vehicle information, but 

also in developing driving models that could be applied to different areas, including but not 

limited to safety analysis considering microscopic individual driver data; calibrating driver 

behavior models, specifically in different weather and traffic conditions; and developing control 

logics for Advanced Driving Assistance Systems (ADAS), and Connected and Automated 

Vehicles (CAV).  
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Safety Critical Events (Crashes /Near Crashes) 

Literature Review 

It is an essential objective in many studies to address causal factors that may lead to an increase 

in crash risk. One of the efforts that researchers did is to utilize naturalistic driving dataset as the 

100-car (124, 125), and SHRP2 NDS dataset (126). In many studies, vehicle kinematics were 

used to detect crash or near-crash event through having a well-defined parameters signature for 

vehicle collisions, critical jerks, evasive maneuver, etc. (127–129). VTTI performed a specific 

methodology to address the factors that may cause an increase of risky events on roadways (130, 

131). Firstly, they selected essential vehicle kinematics and their thresholds “triggers” that would 

help in identifying Safety Critical Events (SCEs). Secondly, a video inspection step was 

executed on the candidate events to eliminate any false non-SCEs. According to the literature, 

the first effort done for utilizing NDS dataset was the 100-car study (125). It aimed at providing 

a primary threshold for vehicle kinematics that can be used to define SCEs. Then many studies 

tried to modify and adjust these thresholds to capture any risky driving patterns. Table 30 shows 

the kinematics parameters thresholds specified by the 100-car study and the Naturalistic Teenage 

Driving Study (NTDS) (132). In addition, a study in Germany 2012, used 102,000 trips collected 

over 2 years and with total driving miles equal 500,000 miles. This study added new kinematic 

thresholds for other parameters such as; time headway should be less than or equal to 0.5 second, 

time to lane crossing should be less than one second, and when the longitudinal deceleration is 

less than 2m/s2, the jerk should be less than 2m/s3 (133). Another study in the US 2013, utilized 

NDS dataset collected form 204 drivers over 31 days to study the impact of cell phone 

distraction by comparing three types of phone answering/usage (134). This study added the type 

of roadway to the deceleration threshold by specifying aggressive deceleration that is less than -

0.3g while the vehicle was traveling above 64 km/h. 
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Table 30. Different Studies Thresholds for Vehicle Kinematics 

Kinematic Parameter 
Previous Studies Thresholds 

100-Car NDS (125) NTDS (132) 

Lateral Acceleration ≥ 0.7g ≥ 0.75 

Longitudinal 

Acceleration 
> 0.6g > 0.65 

Longitudinal 

Deceleration 
<- 0.6g < -0.65 

Forward Time-to-

Collision (TTC) 

≤ 4sec 

under a condition of having an  

acceleration ≥ 0.5g 

or deceleration ≤ -0.5g 

and with a corresponding  

forward range ≤ 100 ft 

≤ 4sec 

under a condition of having an 

acceleration ≥ 0.5g 

or deceleration ≤ -0.5g 

and with a corresponding forward 

range ≤ 100 ft and ≤ 4sec 

under a condition of having an 

acceleration ≥ 0.60g 

or deceleration ≤ -0.60g 

Yaw Rate 

Vehicle swerve from ±4 

deg/sec to ±4 deg/sec within 

3sec 

Vehicle swerve from ±4 deg/sec 

to ±4 deg/sec within 3sec 

 

In 2017, a study focused on the performance of kinematic thresholds in detecting crashes and 

near-crash events using NDS dataset and Canada NDS (CNDS) (131). Sensitivity and specificity 

were the approaches used to reduce the effort done in validating risky events by developing and 

validating vehicle kinematics thresholds that can be used for detecting crash risk events. In 

addition, the study recommended improving the methods used to define crash risk by using 

advanced statistical techniques and artificial intelligence methods. Statistical methods used to 

analyze crash data are mainly classified into two types: parametric and non-parametric models. 

Parametric models were commonly used in previous studies to identify factors contributed to 

SCE such as negative binomial regression (135, 136), and Multivariate Poisson Lognormal (137, 

138). However, non-parametric statistical models were used in the literature such as Latent Class 

Cluster (LCC) (139, 140), Hierarchical and k-mean Clustering (140, 141), and Bayesian 

Networks (BNs) (139). It worth to mention that the data used in these studies were just crash 

frequencies without involving any naturalistic driving datasets in the input data. Therefore, this 

section is focusing on analyzing NDS time-series data of crash events. 

Data Preparation 

All near-crash events occurred on freeways reported in the SHRP2 NDS data were verified using 

visual inspection and by observing any changes in driving patterns in vehicle kinematics time-

series datasets. This step classified if a time interval of a trip should be flagged as a risky driving 

or normal driving. In addition, video records helped in flagging any unexpected behavior from a 

driver such as sudden lane changes, driving on the shoulder, etc. To identify near-crash events 
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and match them with normal driving trips, latitude and longitude data along with video records 

were used in the Geographic Information System (GIS) and the Wyoming NDS Visualization 

and Reduction Software (15).  

Methodology 

The research team utilized 30 near-crash events in rainy weather and randomly selected 60 

events in clear weather with a ratio equal 1:2. Additionally, normal trips were used as a baseline 

while comparing vehicle kinematics associated with events to those in normal driving with a 

matching ratio to near-crash events equal 2:1 (i.e., 2 normal driving trips for each 1 near-crash 

event). This technique was implemented to account for any confounding factors related to 

roadway and driver characteristics. The number of total events used in this section was 30 near-

crash trips in rainy weather and 58 matching normal driving trips. In addition to 60 near-crash 

trips in clear weather and 120 matching normal driving trips. After the research team identified 

all trips of interest, data reduction step was extended to include traffic and environmental 

conditions such as the Weather Condition (WC), Dynamic Traffic Status (DTS), Visibility Level 

(VL), and Road Surface Condition (RC). The extraction process was done by inspecting the 

video records and annotating any changes in these variables. It is worth mentioning that the time-

series NDS data were aggregated over 5-second, 10-second, 15-second, and 60-second time 

windows as shown in Figure 19. In this research, time chunking was assumed and tested to 

determine appropriate sampling rate to effectively capture changes in vehicle kinematics. 

Further, vehicle kinematics are compared in different weather conditions in a trajectory-level 

analysis. Factors contributing to near-crash events are investigated using parametric logistic 

regression and several non-parametric techniques such as decision trees and k-nearest neighbors 

algorithm (k-NN). 
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Figure 19 Fixed Length Aggregation levels Technique Used for Data Reduction 

Analysis 

Vehicle Kinematics for Near-Crash Events in Clear and Rainy Weather  

This section is intended to utilize the NDS data in the context of Connected Vehicle (CV) to 

provide an early understanding of Surrogate Measures of Safety (SMoS) on freeways, and to 

illustrate the effect of weather conditions on traffic safety by comparing vehicle kinematics of all 

near-crash events reduced in this report. The zone of interest (i.e., time duration) and parameter 

extreme values of each vehicle in rainy weather were compared to the corresponding values in 

clear weather. This visual presentation is considered as a guidance step towards an automated 

process of extracting different driving patterns that can be used in a CV environment.  
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Figure 20 shows a comparison between speed, acceleration and deceleration rate, and yaw rate 

for near-crash events in rainy weather and events in clear weather. The average speeds in clear 

weather were higher than in rainy weather. However, in clear weather, events had higher 

standard deviations of speeds than in rain. Figure 20 (b and e) show the difference between 

acceleration and deceleration rates in rainy and clear weather. The zone of interest of 

acceleration and deceleration rate in rainy weather started approximately 10-second before an 

event timestamp while in clear weather it started approximately 5-second before the events. 

Furthermore, maximum deceleration rates in rain was slightly lower than in clear weather 

indicating a compensation for wet surface conditions. Yaw rates were lower in rain than their 

matched clear events. This indicates that drivers in clear weather chose to change lanes more 

often than in rain.  

Figure 21 (a, b, c, d, e, f) summarizes normal trips matching events in clear and rain weather. 

The reasons for using these visual comparisons was to show how vehicle kinematics look like in 

normal trips regardless of driver behavior and freeway geometry. It can be observed that wider 

ranges of acceleration and deceleration rates during events compared to matching normal driving 

trips. Nevertheless, maximum yaw rates for matching normal driving trips to events in rain were 

still higher than those trips matched to clear weather condition. This indicated that the change in 

road geometry might be the reason for increasing yaw rate in rain events and their matching 

trips. The speed selection range was not affected by having an event or not, but it was affected 

mostly by weather conditions, traffic conditions, and road geometry. 
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Figure 20 Vehicle Kinematics Trajectories for Events in Rainy and Clear Weather 



 

 

81 

 

 
Figure 21: Vehicle Kinematics Trajectories for Matched Normal Trips and Events in Rainy and Clear Weather 
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Table 31 provides descriptive statistics for near-crash events in rainy and clear weather, and their 

matching normal trips in clear weather. Average speed, average acceleration and deceleration 

rate, and average yaw rate were significantly lower for events occurred in rain than clear 

weather. Standard deviations of acceleration and deceleration rate, and yaw rate were 

significantly higher in rain than in clear weather. However, the variability of speed was 

significantly lower in rain compared to clear weather. Furthermore, Table 31 provides 

comparisons between events in different weather and their normal matching trips. The variability 

of all vehicle kinematics in rainy and clear weather was higher for the events than for normal 

trips. Conclusively, weather conditions affected the speed selection, as in clear weather the speed 

selection had a wider range compared to rainy weather. Additionally, drivers in rainy weather 

were less likely to change lanes than in clear weather. 

Table 31 Descriptive Statistics for the Near-crash Events and Matching Normal Trips 

Statistical 

Tests 

Events in Rainy and Clear 

Weather 

Events in Rainy Weather and 

Matching Normal Trips 

Events in Clear Weather VS 

Matching Normal Trips 

Rain 

Condition 

Clear 

Condition 

Events in 

Rain 

Matching 

Trips 

Events in 

Clear 

Matching 

Trips 

Speed (kph) 

Average 56.6 70.5 56.6 75.5 70.5 89.0 

Variance 59.2 119.3 59.2 27.1 119.3 9.8 

t-test 
Avg. Speed was significantly 

higher in Rain 

Avg. Speed was significantly 

lower in Rain Events  

Avg. Speed was significantly 

lower in Clear Events 

F-test 

Speed variability was 

significantly lower in Rain 

Events 

Speed variability was 

significantly higher in Rain 

Events 

Speed variability was 

significantly higher in Clear 

Events 

Acceleration / Deceleration Rate (g) 

Average 0.0017 -0.0014 0.0017 0.0023 -0.0014 0.0004 

Variance 0.0015 0.0014 0.0015 0.0001 0.0014 0.0000 

t- Test 

Avg. Acc. / Dec. rate was 

significantly higher in Rain 

Events 

No significant difference in 

Avg. Acc. / Dec. rate 

Avg. Acc. / Dec. rate was 

significant lower in Clear Events 

F- test 
Acc. / Dec. rate variability was 

higher in Rain Events 

Acc. / Dec. rate variability was 

higher in Rain Events 

Acc. / Dec. rate higher in Clear 

Events 

Yaw Rate (deg/sec) 

Average -0.2097 -0.0955 -0.2097 -0.0633 -0.0955 -0.1009 

Variance 0.1401 0.0471 0.1401 0.1162 0.0471 0.0248 

t- Test 

Avg. Yaw Rate was 

significantly lower in Rain 

Events 

Avg. Yaw Rate was 

significantly lower in Rain 

Events 

No significantly difference 

between Avg. Yaw Rate 

F- test 

Yaw Rate variability was 

significantly higher in Rain 

Events 

Yaw Rate variability was 

significantly higher in Rain 

Events 

Yaw Rate variability was 

significantly higher in Clear 

Events 

 

Near-Crash Events Detection on Freeways 

The relation between data reduced form video records and SMoS was demonstrated to predict 

the occurrence of a near-crash event. A parametric model and non-parametric techniques were 



 

 

83 

 

used in this step. Input data were sampled over 1-second and 5-second aggregation levels. The 

selecting of the efficient aggregation level was done after assuming five different aggregation 

levels: 1, 5, 10, 15, and 60-second, and running a binary logistic model. The model was used to 

validate the aggregation levels using trial and error technique. The results indicated that using the 

aggregation level of 1-second and 5-second length could show more reliable results, while other 

aggregation levels failed to provide any significant predictors. Through these models, the 

importance of SMoS and environment factors was illustrated, and how the probability of having 

a near-crash can be estimated using SMoS. 

Parametric Model 

Factors contributing to near-crash occurrence can be identified using both parametric and 

nonparametric models. The logistic regression model could provide relationship between the 

probability of near-crash occurrence and significant predictors. One of the advantages of using 

logistic regression model is the feasibility of interpreting the effects of predictors. 

Table 32 presents the results of a binary logistic regression model. The model results for the 1-

second aggregation level indicates that significant predictors were standard deviation of 

acceleration and deceleration rate, coefficient of variation for acceleration and deceleration rate, 

and the coefficient of variation for yaw rate at six, eleven, and two seconds before the event 

timestamp, respectively. However, model results for 5-second aggregation level were weather 

condition, dynamic traffic state, visibility level, and coefficient of variation of yaw rate before 

event timestamps. The logistic regression model proved no evidence of model poor fitting. 

Moreover, the models showed a significant difference when different aggregation levels were 

used (i.e., 1-second and 5-second) and how this would affect model accuracy. The results 

succeeded to verify the contribution of weather condition, visibility level, and traffic flow status 

within 5-second before near-crash events. Additionally, the results showed how vehicle 

kinematics could help in predicting near-crash on freeways in the last 11 seconds before the 

near-crash depending on time-series data collected by the NDS instrumented vehicle. This 

finding can be used in CV applications to enhance traffic safety. 
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Table 32 Logistic Regression Results for Modeling Near-Crash Occurrence on Freeways 

A. 1-second Aggregation level 

Variable Coefficient 
Standard 

Error 

Wald Chi-

Square 
Significance 

Intercept -5.51 0.81 45.96 <.0001 

Standard Deviation of Acc. and Dec. Rate 

(T106)* 
39.31 16.89 5.41 0.02 

Standard Deviation of Acc. and Dec. Rate 

(T120)* 
134.60 21.36 39.70 <.0001 

Coefficient of Variance of Acc. and Dec. Rate 

(T100)* 
0.24 0.10 5.84 0.02 

Coefficient of Variance of Yaw Rate 

(T118)* 
-0.40 0.20 4.23 0.04 

B. 5-second Aggregation level 

Variable Coefficient 
Standard 

Error 

Wald Chi-

Square 
Significance 

Intercept -1.79 0.30 34.88 <.0001 

WC 1.37 0.34 16.37 <.0001 

DTS 0.90 0.32 7.97 0.00 

VL 0.76 0.33 5.29 0.02 

Coefficient of Variance of Yaw Rate 

(T120)* 
0.03 0.02 3.20 0.07 

     

*Vehicle Kinematics time slices (T) were numbered as following: 

 The data were used from 30 seconds before the event (time slice number 90) till the event timestamp (T120). 

 For 1-second aggregation level: T91, T92, T93, …, T118, T119, T120. 

 For 5-second aggregation level: T95, T100, T105, …, T110, T115, T120 

Non-Parametric Models 

One of the main advantages using a non-parametric model over a parametric model is that no 

certain assumptions are needed between dependent and independent variables. In addition, a non-

parametric model can handle massive datasets while a parametric model has some limitations on 

data size  (141, 142). This analysis selected three supervised Machine Learning algorithms: 

Decision Tree, K-Nearest Neighbors (K-NN) Classification, and Deep Learning Artificial Neural 

Network (ANN), Classification models. These models were used to predict the occurrence of a 

near-crash event on a freeway in clear and rainy weather. These models were evaluated based on 

the accuracy of the developed model to predict near-crash events.  

Figure 22 shows the results of the decision tree model. Results indicate the contribution of 

vehicle kinematics in predicting a near-crash event is in a zone of interest approximately 20 

seconds time window before the event occurrence. Additionally, weather condition, i.e., rain or 

clear, was the root node of the decision tree when 5-second aggregation level was used.  
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Figure 22 Result of Decision Tree Model Applied on 1-second and 5-second Aggregation Levels
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Table 33 shows models accuracy and the confusion matrix associated with 1-second and 5-

second aggregation levels. Results show a significant difference in accuracy based on the 

aggregation level. For example, the results of 1-second show that the Decision Tree model had 

the highest accuracy of 96 percent, followed by Deep Learning ANN with an accuracy equal 84 

percent, then K-NN with an accuracy equal to 81 percent. However, for 5-second, Deep Learning 

ANN had the highest accuracy of 85 percent, followed by Decision Tree model with an accuracy 

equal 69 percent, then the K-NN model with an accuracy equal 63 percent. 

 

Table 33: Results of Non-Parametric Models Used for Predicting Near-Crash Events 

Non-Parametric 

Models 

Aggregation 

Level 

Overall 

Classification 

Rate 

True 

Positive 

Rate 

True 

Negative 

Rate 

False 

Positive 

Rate 

False Negative 

Rate 

1. Decision Tree 

1- Second 96% 93% 97% 3% 7% 

 

5- Seconds 69% 13% 97% 3% 87% 

 

2. K-NN 

1- Second 81% 49% 98% 2% 51% 

 

5- Seconds 63% 20% 85% 15% 80% 

 

3. Deep 

Learning 

ANN 

1- Second 84% 87% 83% 17% 13% 

 

5- Seconds 85% 93% 81% 19% 7% 

 

Summary & Next Steps 

Continuous vehicle kinematics datasets enhanced the understanding of the rainfall effects on 

increasing the probability of having a near-crash event, through dissimilarity in the driver’s 

behavior, vehicle kinematics, and driving patterns while having a safe or risky driving. The 

speed, acceleration and deceleration rate, and yaw rate can be utilized as SMoS indicators to 

differentiate between normal driving and near-crash events. Supervised machine learning 

techniques proved to enhance the verification process by predicting near-crash occurrence on 

freeways. Moreover, the time chunking technique attempted in this approach would help future 

studies in outlining the interest zone of vehicle kinematics used as SMoS for near-crash events. 
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The effort done in summarizing vehicle kinematics signatures, by adding environmental 

conditions as a new dimension, will help in extracting different driving pattern through 

developing an algorithm that can handle CV datasets. Results from parametric and non-

parametric models might be used in Advanced Driver Warning Systems (ADAS), as warning 

messages could be displayed to drivers between 5 and 20 seconds before the occurrence of a 

risky event. Additionally, future work will be extended to automate the data reduction and 

analysis for CV applications through utilizing supervised and unsupervised machine learning 

techniques. 
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CHAPTER 4 – CONCLUSIONS AND PLANS FOR PHASE 3 

This report provides a detailed overview of the findings from the second phase of the Wyoming 

Department of Transportation (WYDOT) SHRP2 Implementation Assistance Program (IAP) 

project. The IAP is a FHWA sponsored program that was created to encourage state DOTs to use 

the SHRP2 Safety Data to conduct research that leads to practical countermeasure development. 

The program is divided into three stages, starting with a proof-of-concept phase, moving into a 

full research analysis phase, and ending with countermeasure development and adoption. Due to 

Wyoming’s severe winter seasons, the project team elected to address driver behavior 

characteristics prevalent during adverse weather and roadway conditions. Therefore, using the 

data available from the SHRP2 Naturalistic Driving Study (NDS) and Roadway Information 

Database (RID), the research team investigated the impact of adverse conditions on driver 

behavior. 

The following sections provide an overview of the WYDOT SHRP2 IAP research objectives and 

how these objectives have been addressed in the first two phases or will be addressed in the third 

phase. Next, specific contributions from Phase 2 are described and core objectives for Phase 3 

are explained. Finally, a summary of lessons learned related to the project team’s experience 

using the SHRP2 Safety Data are provided. 

Review of Project Objectives 

The project objectives described in chapter 1 are listed below with a description of how the 

presented research met each objective.  

1. Can NDS trips occurring in inclement weather be identified efficiently and effectively 

using available NDS and RID data? 

Findings from the first project phase indicated the feasibility of collecting weather-related trips 

using the NDS vehicles’ windshield wiper status. Phase 2 introduced two additional data 

acquisition methodologies which enabled the collection of trips from a wide variety of weather 

conditions. The novel data acquisition procedure developed for Phase 2 uses three 

complementary methodologies: (i) windshield wiper status, (ii) weather stations’ data, and (iii) 

weather-related crash reports. In order to capture a wide range of roadway conditions—those in 

active weather events (e.g., during a blizzard) and those not in active weather events (e.g., black 

ice road conditions)—a 24 hour time window surrounding recorded weather events in methods 

(ii) and (iii) was used. Using these three methodologies, more than 11,000 NDS trips were 

extracted as being potentially weather-related trips. Through efficient data reduction and 

processing procedures, these trips were evaluated and 4,094 NDS trips were confirmed to have 

been influenced by adverse weather conditions. Of these adverse trips, 3,013 occurred in rain, 

234 in fog, 320 in snow, 317 in clear conditions with wet pavement, and 210 in clear conditions 

with snow-covered pavement. In addition to collecting full trips occurring during adverse 

conditions, weather-related crash and near crash event data were collected. From these collected 

events, 7 crashes and 33 near crashes occurred in rain or sleet conditions.  

2. Can driver behavior (e.g., speed selection, car-following, and lane wandering) during 

inclement weather conditions be characterized efficiently from the NDS data? 
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A central focus of Phase 2 was deriving appropriate methods for characterizing different 

elements of driving behavior such that behavior differences in adverse and clear conditions could 

be compared. The research team successfully implemented a series of speed selection models 

which identified desired driving speeds during different weather conditions (i.e., snow, rain, and 

fog). Parametric ordinal logistic regression and non-parametric classification tree modeling 

techniques were leveraged to advance the understanding of drivers’ selected speeds during 

different levels of adverse weather. Drivers’ car-following behavior was analyzed through the 

calibration of the Gipps car-following model. The analysis identified whether observed changes 

in drivers’ following distance, following headway, and relative speed kept with the leading 

vehicle matched the predicted behaviors from the calibrated model. Drivers’ lane-keeping 

behavior during adverse conditions was analyzed using logistic regression and multivariate 

adaptive regression splines (MARS). The results indicated that weather conditions were a 

significant factor related to drivers’ lane-keeping ability. Finally, safety critical events (i.e., 

crashes and near crashes) were reviewed. Both parametric and non-parametric models were used 

to describe vehicle kinematics during these events.  

3. What are the best surrogate measures for weather-related crashes that can be identified 

using the NDS data? 

The third project objective was addressed in the analysis of safety critical events. The purpose of 

generating surrogate measures for weather-related crashes is to inform research aiming to 

identify near crash events in real time. With the introduction of connected vehicle technology, 

vehicle kinematics data will be available in real time; therefore, the identification of specific 

surrogate measures related to crash and near crash events, especially those occurring in adverse 

conditions, is critical. The findings from Phase 2 indicate that vehicle speed, acceleration, 

deceleration, and yaw rate can be utilized as surrogate measures of safety to differentiate 

between normal driving and near crash events.  

4. What type of analysis can be performed and conclusions drawn from the resulting 

dataset? 

Analyzing the role of adverse conditions on driving behavior is crucial for developing 

countermeasures to improve the safety and reliability of the transportation network during and 

after adverse weather events. The behavior analyses presented in this report take many forms in 

order to better characterize different elements of the complex driving task. These analyses 

included parametric and non-parametric modeling techniques, calibration techniques of existing 

behavioral models, and machine learning techniques. The results of these analyses will directly 

contribute to the improvement of the Wyoming Variable Speed Limit (VSL) control algorithm, 

weather-related microsimulation modeling procedures needed for the Wyoming Connected 

Vehicle Pilot project, and future work aiming to identify weather-related safety critical events in 

real time.  
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5. Can the NDS data be extrapolated to provide real-time weather information in the context of 

the Road Weather Connected Vehicle Applications?  

The last project objective was addressed by developing a tool called Wyoming NDS 

Visualization and Reduction Software to identify the visibility conditions in real-time using AI 

techniques. The software is still under development to increase the accuracy and precision of 

estimates. In addition, data mining methods were utilized to detect weather events from vehicle 

kinematics. As mentioned earlier, considering the similarities between the trajectory-level NDS 

and the CV data, the results provided an early understanding of Surrogate Measures of Safety 

(SMoS) on freeways, and illustrated the effect of weather conditions on traffic safety by 

comparing vehicle kinematics of near-crash events. 

Review of Phase 2 Contributions 

Chapter 2 describes the data acquisition procedures used to query the SHRP2 NDS database. The 

three complementary methodologies developed by the project team introduce a novel method for 

identifying weather-related natural driving trips using both internal vehicle data and external 

weather information. Using these procedures, trips influenced by weather—both during and after 

the weather event—were captured and used for analysis. These complementary methodologies 

not only contribute a method to extract weather-related trips from the SHRP2 NDS, but are 

extendable to other NDS and vehicle-trajectory databases available worldwide.   

Chapter 2 also discusses the data reduction tools developed to efficiently and effectively process 

the extracted trip files from the SHRP2 NDS. Due to the large quantity and size of trip files, 

efficient data processing procedures were developed. In order to automate a portion of the data 

reduction process, the project team created the Wyoming NDS Data Analysis Tool, which is a 

python-based analytic tool that produces summary statistics, performs time chunking procedures, 

and creates video observation templates. As part of this tool, summary files can be generated that 

describe entire trips or specific trip segments, such as individual time chunks or a single car-

following event.  

The second component to data reduction and processing is video observation in order to identify 

weather, roadway, and traffic conditions. For this project phase, manual video processing was 

required to identify the roadway type, weather condition, road surface conditions, visibility, and 

level of service. While explicit definitions of discrete condition categories were described to all 

video-reviewers, manual video observation was not preferred due to its time-intensive nature. 

For this reason, the project team developed the Wyoming Data Visualization and Reduction tool 

aiming to reduce the burden of manual video reduction. This tool utilizes state-of-the-art 

techniques for image processing to identify visibility levels based on three thresholds (low, 

moderate, and high). In addition, the research team is exploring alternate machine learning 

techniques for more effectively characterizing other aspects of the video image including 

surrounding traffic and road surface conditions. Due to the complex nature of these methods, this 

tool is still under development and the work will be continued during the third project phase. 

The purpose of Phase 2 of the IAP is to conduct a series of in depth research analyses to answer 

the project research questions and identify countermeasures from the research experience and 

findings to improve network safety and reliability. As described, the WYDOT IAP is centered 
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upon advancing the understanding of driver behavior during adverse weather conditions. To this 

end, a series of analyses related to different elements of the driving task were investigated 

separately and their results are provided in chapter 3. As part of this in-depth analysis, speed 

selection, car-following behavior, lane-keeping behavior, and safety critical events were 

investigated during adverse weather conditions, compared with matching clear conditions. In 

order to perform these analyses, the project team leveraged a trip matching technique which 

ensured that all adverse weather trips were matched with at least two clear weather trips taken by 

the same driver, on the same route. In this way, drivers’ reactions to weather conditions could be 

better isolated and the research team could identify findings with higher confidence. 

As the core of this report, chapter 3 presents the behavior analysis for each of the described 

elements of the driving task, as individual avenues of research focused on specific areas of driver 

behavior were identified and investigated separately. These areas of driver behavior research 

include speed selection, car-following, lane-keeping, and safety critical events. While these 

research areas were presented separately due to their distinctive nature, each is a crucial element 

in identifying driver behaviors specific to different weather conditions. Improved understanding 

of weather-induced driver behavior can inform decisions made by transportation agencies 

through the identification of key roadway characteristics or specific roadway segments in which 

drivers’ behavior is more severely impacted during adverse weather. A summary of the 

contribution from each of these research avenues are provided below. 

 Generation of a series of speed selection models highlighting drivers’ desired speeds 

during various weather conditions. Parametric ordinal logistic regression and non-

parametric classification trees modelling were utilized to better understand speed 

selection behavior in adverse weather conditions. The purpose of this analysis was to 

gather insights into driver speed preferences in different weather conditions, such that 

efficient logic can be implemented to introduce a realistic Variable Speed Limit system, 

aimed at maximizing speed compliance and reducing speed variations. The analysis also 

provides valuable information related to drivers’ interaction with real-time changes in 

roadway and weather conditions, leading to a better understanding of the effectiveness of 

operational countermeasures.  

 Evaluation of car-following behavior in clear and adverse weather conditions to 

distinguish the difference in drivers’ perception of a leading vehicle. The Gipps car-

following model was calibrated using both clear and adverse trips to determine if the 

subtle changes in car-following behavior could be captured by model calibration. Results 

are promising and future work in Phase 3 will evaluate the impact of improved car-

following model calibration in microsimulation needed for the Wyoming Connected 

Vehicle Pilot Program. 

 Investigation of drivers’ lane-keeping ability during adverse weather events. Both 

parametric logistic regression and non-parametric MARS modelling approaches were 

utilized to identify contributing factors affecting driver lane keeping ability in different 

weather conditions. Results from this study may provide insights into automating the 

activation and deactivation of lane departure warning systems. 

 Development of a framework to analyse and identify factors affecting safety critical 

events in a trajectory level utilizing classical logistic regression and data mining decision 
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tree and K-NN approaches.  The results will help in extracting different driving pattern 

through developing an algorithm that can handle CV datasets. 

As described, the intent of the Wyoming SHRP2 IAP project is to analyze weather-related 

driving behavior for the purpose of identifying specific countermeasures and applications that 

WYDOT can adopt and champion to improve transportation safety and reliability. Therefore, the 

critical contribution of this project phase is the identification of three explicit areas in which the 

research presented in Chapter 3 can be used in practice: 

1. Improvement to existing weather-dependent variable speed limit (VSL) control algorithm 

used by WYDOT for their interstate VSL systems. 

Due to the limited understanding of the interaction between driver behavior/performance and 

weather conditions, the continuation of this research into Phase 3 aims to establish a Connected 

Human-in-the-Loop VSL system, which is aligned with the SHRP2 Task Force’s focus areas. An 

important component of the driver-weather interaction is the characterization of traffic flow 

because heterogeneity driving behavior is different among differing weather conditions and 

levels of congestion. Modeling variation in driver behavior with adverse weather conditions and 

traffic flow states is crucial to assign effective VSLs, as these algorithms must consider the 

impact of both weather and traffic conditions when suggesting the safest and most efficient 

speed. In fact, the proposed speed selection models in this study will be evaluated for direct 

integration into the VSL algorithms considering detailed traffic, weather, and driver information.  

The updated VSL algorithms could provide speed limits that are better suited to real time 

weather and traffic conditions, which is expected to improve drivers’ speed compliance. For 

instance, the results of the CART speed selection modeling revealed that 56% of drivers were 

likely to reduce their speed by more than 14 percent in snowy surface conditions, free-flow 

traffic, and affected visibility conditions. From these results, behavior adjustment factors for 

similar weather conditions can be generated and applied to the VSL algorithm to improve speed 

compliance.  

An additional benefit from the developed speed selection models may be introduced in 

Connected Vehicle (CV) speed harmonization applications, where the VSL system could be 

expanded to ingest mobile vehicle data as an input and transfer VSL notifications to on-board 

units (OBU). The OBUs could then provide speed advisories, regulatory speeds, or other related 

advisories to the driver. Messages such as, “turn off cruise control”, could be sent in real-time to 

more effectively regulate driving speed and preserve a safe flow of traffic. If unusual traffic 

patterns are detected, or inclement weather events are forecasted or experienced, these geospatial 

locations could be flagged for implementation of an appropriate and timely mitigation strategy to 

reduce the impact of the adverse weather condition. 

2. Improved guidance related to microsimulation modeling of adverse weather conditions, 

and generation of a “base model” to represent driving behavior in adverse weather 

conditions for use in the Wyoming CV Pilot project impact assessments. 
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The inclusion of microsimulation analyses in agency decision-making procedures is common. 

The results from these models can guide cost-benefit analyses by projecting the impact of 

different traffic control strategies. Agencies often leverage the detailed analysis to compare 

alternative intersections designs, forecast traffic congestion with and without added lanes, and 

assess cutting-edge traffic control strategies before they’re implemented in the field (e.g., 

diverging diamond interchanges were originally developed and evaluated using microsimulation 

software). Successful microsimulation base models accurately reflect real conditions—roadway 

geometry, existing traffic control strategies, travel demand, and driving behavior—on the 

selected roadway segment. From the base model, different alternatives and projections are 

completed by adjusting one or more of these factors based on potential construction or travel 

demand. Once roadway geometry, traffic control strategies, or travel demands are adjusted in a 

model, the glue holding the model together is the accurate representation of driving behavior. 

Without calibrated driver behavior data reflecting specific driver tendencies and driving 

conditions prevalent on the modeled corridor, accurate predictions cannot be achieved.  

Compared to the rest of the country, the state of Wyoming has only a few isolated areas of high 

travel demand and congestion in which the common approach to microsimulation modeling is 

required. Rather, due to frequent shifts in weather conditions that have severe impacts on the 

rural transportation network, microsimulation modeling could be used to assess the impact of 

large weather events on existing roadways or scenarios such as proposed work zones and large 

events drawing an increased travel demand. Therefore, this research supports the development of 

a weather-dependent calibration procedure through the evaluation of driving behaviors (i.e., 

speed selection, car-following, and lane keeping). Unprecedented insight into driver behaviors in 

adverse weather conditions available through the SHRP2 NDS database enabled the project team 

to develop procedures to calibrate components of microsimulation models considering weather 

as a fundamental behavioral factor. These findings will be used to generate a microsimulation 

“base model” representing the impact of various weather conditions on driving behavior. Future 

studies will evaluate the transferability of these weather-related behaviors in different 

geographical regions. 

Lastly, the project team’s motivation for developing procedures to calibrate a weather-dependent 

microsimulation model is related to the needs of the Wyoming Connected Vehicle (CV) Pilot 

project. The Wyoming CV Pilot is developing a rural CV application to communicate standard 

messages between equipped vehicles and infrastructure devices. These messages are expected to 

improve safety and roadway efficiency by providing drivers with greater awareness of roadway 

and traffic conditions, with a specific emphasis on adverse weather events. A pivotal component 

of this project is assessing the impact the applied applications have on driver behavior and on 

overall roadway efficiency. To this end, the CV Pilot team will rely on microsimulation 

modeling to assess the impact of the applied CV applications and will likely leverage the 

procedures established in this SHRP2 IAP to calibrate their base (non-CV) model in adverse 

weather conditions. 
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3. Evaluation of SHRP2 NDS weather-related vehicle dynamics to support the development 

of real-time CV applications requiring weather and roadway condition input data. 

The third practical output from Wyoming’s SHRP2 IAP relates to the detailed analysis of safety 

critical events occurring in clear and adverse weather conditions. The future of connected vehicle 

(CV) technology relies on successful application of the surplus of data that will be generated by 

the constant communication between vehicles, infrastructure, and other road users. Basic Safety 

Messages (BSMs) describing vehicle dynamics will only be pertinent for a brief amount of time; 

therefore, efficient protocols and algorithms are required to identify and react to events of 

interest in real time.  

The findings from this study identify surrogate measures of safety—or critical vehicle kinematics 

data elements—that may serve as indicators of near crash or crash events using the SHRP2 NDS 

data. Due to the lack of available CV data, researchers are required to leverage surrogate data 

sources to begin developing protocols for handling the influx of CV data. The SHRP2 NDS 

provides vehicle data very similar to the data available from BSMs; therefore, researchers took 

advantage of the opportunity to use these data to add to the state of research. The goal of this 

objective is to identify specific measures and thresholds that might distinguish between weather-

related and non-weather-related safety critical events. With the limited sample size available, the 

project team produced a set of findings identifying the significance of vehicle kinematics 

variables in predicting safety critical events and will continue to develop recommendations for 

future real time CV applications.      

Plans for Phase 3 

As detailed earlier, the objective of the second phase was to conduct a thorough analysis using a 

larger set of NDS trips to extract behavioral trends specific to a wide variety of weather 

conditions (i.e., rain, snow, and fog) from a diverse driver population from each of the six 

SHRP2 data collection sites. The objective of Phase 3 is to interpret these findings such that they 

can be used to inform the development of Wyoming-based safety and reliability 

countermeasures.  

Phase 3 of the Wyoming SHRP2 IAP project begins in October 2017 and will conclude by the 

end of September 2019. The solid foundation generated in the first two project phases will be 

used to enhance the existing weather-dependent VSL system operated by WYDOT. Specifically, 

the speed selection models will be validated using available data from Wyoming interstates to 

develop a suitable algorithm for VSL operation. The car-following and lane-keeping findings 

will be used to develop weather-related microsimulation model guidance that could be used to 

evaluate future countermeasures. Finally, the analyses from safety critical events in adverse and 

clear conditions will be used to provide recommendations for surrogate measures of safety that 

could enable the detection of crash and near crash events in real time using connected vehicle 

data. 

Summary of Lessons Learned 

The SHRP2 NDS and RID databases are extremely rich databases that introduce substantial 

potential to researchers for better understanding driving behavior in a large number of natural 

driving environments. In order to support the development of new project statements and inform 
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researchers interested in using the SHRP2 data, the project team aggregated a list of lessons 

learned from their experience in Phase 1 and 2 of the IAP.  

 Sole utilization of the wiper setting variable to identify weather-related trips is not 

sufficient as this variable is missing for significant number of NDS trips—which could be 

due to an error in the DAS system or the overrepresentation of old vehicles in the SHRP2 

dataset—and only enables the collection of trips during active precipitation. 

 Use of multiple sources of weather data, such as weather stations and weather-related 

crashes, while costly and labor intensive, enhanced the capability of the research team to 

identify sufficient weather-related events.  

 Employing an effective data reduction procedure is a critical requirement when using the 

SHRP2 NDS and RID databases due to their massive dimensionality. Creative reduction 

methods (such as, one-minute sampling rates) are useful in efficiently analysing a 

substantial number of trips. 

 Manual observation of the trips to identify surface, weather, visibility, and traffic 

conditions was a successful procedure; however, detailed training of video observers 

about different levels of each specific variable should be considered to reduce the 

subjectivity. In addition, considering the time and labor work, more advanced techniques 

should be considered in future research to automate the process as much as possible.   

 Related to the previous point, the research team is currently working on new methods to 

capture the visibility conditions from the front view camera using AI and Deep Learning 

techniques. However, video quality—specifically in adverse weather—and variations in 

physical camera location among different instrumented vehicles are challenges for this 

effort.  

 Assessing the effectiveness of different countermeasures on NDS traversed routes 

requires the exact time of the trips as well as the external data related to each specific 

countermeasure. Even though some information about each countermeasure might be 

acquired from different agencies, the important component of exact time of the trips is 

considered as Personally Identifiable Information (PII), which is one of the biggest 

challenges to get the maximum benefits out of SHRP2 NDS dataset. The USDOT FHWA 

is actively working on this issue by leveraging the SHRP2 NDS data with sanitized PII 

data and provide them to the NDS time-series data. 

 Driver behavior characteristics are often considered site specific, therefore transferability 

of the obtained results is not guaranteed. However, the diverse data collection sites and 

the large amount of available data through the SHRP2 NDS enabled the assessment of 

result transferability and decreased probability of model overfitting. The continuation of 

this research will compare the trajectory-level speed data collected from the CV pilot 

deployment project in Wyoming to provide a better insight regarding the transferability 

of SHRP2 results to I-80 corridor.       

 The SHRP2 NDS data has a remarkable similarity to CV data; therefore, this data source 

can be used as surrogate data source to assess CV applications before CV data are readily 

available.  
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Concluding Statements 

Adverse weather conditions severely impact the operations and safety of the transportation 

network. Due to unique challenges of severe adverse weather conditions on remote highways and 

interstates throughout the state of Wyoming, WYDOT is motivated to identify solutions that will 

enhance travel safety and reliability. While substantial research has been conducted to identify 

the impact of adverse weather on the transportation network, few studies have focused on the 

root cause of those impacts. All network-wide impacts attributed to various adverse weather 

events are caused by specific driver behavior adjustments in response to those adverse conditions 

weather conditions. With the generation of the SHRP2 NDS and RID, researchers have a new 

opportunity to evaluate driver behavior in a multitude of different driving environments, 

including adverse weather conditions. Recognizing this opportunity WYDOT entered the SHRP2 

Implementation Assistance Program (IAP) and was awarded three project phases to research the 

impact of adverse weather conditions on individual driver behaviors and develop the findings 

into countermeasures to address these impacts.  

This report presents the findings from the second phase of the Wyoming SHRP2 IAP project. 

The reported findings include novel data acquisition and efficient data reduction strategies 

aiming to increase the usability of the SHRP2 NDS data. In addition, advanced machine learning 

and image processing strategies were leveraged to automatically extract valuable data from the 

NDS video footage. Distinctive areas of research related to driver behavior (i.e. speed selection, 

car following, lane keeping) were evaluated using a series of analytic and modeling techniques to 

interpret drivers’ decision making and represent the behavior adjustments in mathematics and 

empirical models for future prediction. The report concludes with a discussion of the findings 

and an introduction to the third project phase which will build upon these findings to produce 

tangible countermeasures to improve transportation safety and reliability during adverse weather 

events. 
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